CuO纳米流体在双管U型弯管换热器中的强化传热

IF 2.7 Q3 NANOSCIENCE & NANOTECHNOLOGY Journal of Nanofluids Pub Date : 2023-06-01 DOI:10.1166/jon.2023.2014
Hozaifa A. Mohamed, Majed M. Alhazmy, F. Mansour, E. Negeed
{"title":"CuO纳米流体在双管U型弯管换热器中的强化传热","authors":"Hozaifa A. Mohamed, Majed M. Alhazmy, F. Mansour, E. Negeed","doi":"10.1166/jon.2023.2014","DOIUrl":null,"url":null,"abstract":"The present research aims to enhance the convective heat transfer coefficient inside the tube of the double pipe heat exchangers, this is carried out by mixing the water with copper oxide (CuO) nanoparticles. In this study, the effects of nanofluid with different volume concentrations\n from 0 to 0.4%, flowrates of nanofluid inside the tube, and water flow through the annulus, and inlet temperature inside the tube were examined on the Nusselt number. From the analysis, experiential data found nanoparticles have a significant enhancement of the convective heat transfer coefficient\n inside the tube of the double pipe. The heat transfer coefficient inside the tube increases as the Reynolds numbers of the flow inside the tube, and water flow through the annulus increase. The convective heat transfer coefficients reached maximum values at 0.35% of the volume concentrations\n of CuO nanoparticles and then decreased as the increase of the volume concentrations increases. The fiction factor increases as the volume concentrations of nanoparticles increases. Empirical correlations are presented describing the Nusselt number and the friction factor of the nanofluid\n flow inside the tube of the double pipe and concealing the affecting parameters in such process.","PeriodicalId":47161,"journal":{"name":"Journal of Nanofluids","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer Enhancement Using CuO Nanofluid in a Double Pipe U-Bend Heat Exchanger\",\"authors\":\"Hozaifa A. Mohamed, Majed M. Alhazmy, F. Mansour, E. Negeed\",\"doi\":\"10.1166/jon.2023.2014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present research aims to enhance the convective heat transfer coefficient inside the tube of the double pipe heat exchangers, this is carried out by mixing the water with copper oxide (CuO) nanoparticles. In this study, the effects of nanofluid with different volume concentrations\\n from 0 to 0.4%, flowrates of nanofluid inside the tube, and water flow through the annulus, and inlet temperature inside the tube were examined on the Nusselt number. From the analysis, experiential data found nanoparticles have a significant enhancement of the convective heat transfer coefficient\\n inside the tube of the double pipe. The heat transfer coefficient inside the tube increases as the Reynolds numbers of the flow inside the tube, and water flow through the annulus increase. The convective heat transfer coefficients reached maximum values at 0.35% of the volume concentrations\\n of CuO nanoparticles and then decreased as the increase of the volume concentrations increases. The fiction factor increases as the volume concentrations of nanoparticles increases. Empirical correlations are presented describing the Nusselt number and the friction factor of the nanofluid\\n flow inside the tube of the double pipe and concealing the affecting parameters in such process.\",\"PeriodicalId\":47161,\"journal\":{\"name\":\"Journal of Nanofluids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanofluids\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1166/jon.2023.2014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanofluids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jon.2023.2014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在通过将水与氧化铜(CuO)纳米颗粒混合来提高双管换热器管内的对流传热系数。在这项研究中,研究了不同体积浓度(0至0.4%)的纳米流体、管内纳米流体的流速、通过环空的水流以及管内入口温度对努塞尔数的影响。通过分析,经验数据发现纳米颗粒对双管内的对流传热系数有显著的提高。管内的传热系数随着管内流动的雷诺数和通过环空的水流的增加而增加。对流传热系数在CuO纳米颗粒体积浓度的0.35%时达到最大值,然后随着体积浓度的增加而降低。虚构因子随着纳米颗粒体积浓度的增加而增加。给出了描述纳米流体在双管内流动的努塞尔数和摩擦系数的经验关系式,并掩盖了这一过程中的影响参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Heat Transfer Enhancement Using CuO Nanofluid in a Double Pipe U-Bend Heat Exchanger
The present research aims to enhance the convective heat transfer coefficient inside the tube of the double pipe heat exchangers, this is carried out by mixing the water with copper oxide (CuO) nanoparticles. In this study, the effects of nanofluid with different volume concentrations from 0 to 0.4%, flowrates of nanofluid inside the tube, and water flow through the annulus, and inlet temperature inside the tube were examined on the Nusselt number. From the analysis, experiential data found nanoparticles have a significant enhancement of the convective heat transfer coefficient inside the tube of the double pipe. The heat transfer coefficient inside the tube increases as the Reynolds numbers of the flow inside the tube, and water flow through the annulus increase. The convective heat transfer coefficients reached maximum values at 0.35% of the volume concentrations of CuO nanoparticles and then decreased as the increase of the volume concentrations increases. The fiction factor increases as the volume concentrations of nanoparticles increases. Empirical correlations are presented describing the Nusselt number and the friction factor of the nanofluid flow inside the tube of the double pipe and concealing the affecting parameters in such process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Nanofluids
Journal of Nanofluids NANOSCIENCE & NANOTECHNOLOGY-
自引率
14.60%
发文量
89
期刊介绍: Journal of Nanofluids (JON) is an international multidisciplinary peer-reviewed journal covering a wide range of research topics in the field of nanofluids and fluid science. It is an ideal and unique reference source for scientists and engineers working in this important and emerging research field of science, engineering and technology. The journal publishes full research papers, review articles with author''s photo and short biography, and communications of important new findings encompassing the fundamental and applied research in all aspects of science and engineering of nanofluids and fluid science related developing technologies.
期刊最新文献
Heat Generation/Absorption in MHD Double Diffusive Mixed Convection of Different Nanofluids in a Trapezoidal Enclosure Numerical Investigation of Hybrid Nanofluid Natural Convection and Entropy Generation in a Corrugated Enclosure with an Inner Conducting Block Magnetohydrodynamic Free Convective Flow in a Vertical Microchannel with Heat Sink Unsteady Natural Convection of Dusty Hybrid Nanofluid Flow Between a Wavy and Circular Cylinder with Heat Generation Synergistic Heat Transfer in Enclosures: A Hybrid Nanofluids Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1