T固定时具有随机交互效应和多个结构断裂的面板数据模型的估计

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2022-04-22 DOI:10.1080/07350015.2022.2067546
Y. Kaddoura, J. Westerlund
{"title":"T固定时具有随机交互效应和多个结构断裂的面板数据模型的估计","authors":"Y. Kaddoura, J. Westerlund","doi":"10.1080/07350015.2022.2067546","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we propose a new estimator of panel data models with random interactive effects and multiple structural breaks that is suitable when the number of time periods, T, is fixed and only the number of cross-sectional units, N, is large. This is done by viewing the determination of the breaks as a shrinkage problem, and to estimate both the regression coefficients, and the number of breaks and their locations by applying a version of the Lasso approach. We show that with probability approaching one the approach can correctly determine the number of breaks and the dates of these breaks, and that the estimator of the regime-specific regression coefficients is consistent and asymptotically normal. We also provide Monte Carlo results suggesting that the approach performs very well in small samples, and empirical results suggesting that while the coefficients of the controls are breaking, the coefficients of the main deterrence regressors in a model of crime are not.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Estimation of Panel Data Models with Random Interactive Effects and Multiple Structural Breaks when T is Fixed\",\"authors\":\"Y. Kaddoura, J. Westerlund\",\"doi\":\"10.1080/07350015.2022.2067546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we propose a new estimator of panel data models with random interactive effects and multiple structural breaks that is suitable when the number of time periods, T, is fixed and only the number of cross-sectional units, N, is large. This is done by viewing the determination of the breaks as a shrinkage problem, and to estimate both the regression coefficients, and the number of breaks and their locations by applying a version of the Lasso approach. We show that with probability approaching one the approach can correctly determine the number of breaks and the dates of these breaks, and that the estimator of the regime-specific regression coefficients is consistent and asymptotically normal. We also provide Monte Carlo results suggesting that the approach performs very well in small samples, and empirical results suggesting that while the coefficients of the controls are breaking, the coefficients of the main deterrence regressors in a model of crime are not.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/07350015.2022.2067546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/07350015.2022.2067546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 4

摘要

摘要在本文中,我们提出了一种具有随机交互效应和多个结构断裂的面板数据模型的新估计量,该估计量适用于时间段数T固定且只有横截面单元数N大的情况。这是通过将断裂的确定视为收缩问题来完成的,并通过应用Lasso方法的版本来估计回归系数、断裂数量及其位置。我们证明,当概率接近1时,该方法可以正确地确定中断的次数和中断的日期,并且特定状态回归系数的估计量是一致的和渐近正态的。我们还提供了蒙特卡洛结果,表明该方法在小样本中表现良好,经验结果表明,虽然控制系数正在打破,但犯罪模型中主要威慑回归因子的系数却没有。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of Panel Data Models with Random Interactive Effects and Multiple Structural Breaks when T is Fixed
Abstract In this article, we propose a new estimator of panel data models with random interactive effects and multiple structural breaks that is suitable when the number of time periods, T, is fixed and only the number of cross-sectional units, N, is large. This is done by viewing the determination of the breaks as a shrinkage problem, and to estimate both the regression coefficients, and the number of breaks and their locations by applying a version of the Lasso approach. We show that with probability approaching one the approach can correctly determine the number of breaks and the dates of these breaks, and that the estimator of the regime-specific regression coefficients is consistent and asymptotically normal. We also provide Monte Carlo results suggesting that the approach performs very well in small samples, and empirical results suggesting that while the coefficients of the controls are breaking, the coefficients of the main deterrence regressors in a model of crime are not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1