Sophie A Baron , Seydina M Diene , Jean-Marc Rolain
{"title":"人类微生物组和抗生素耐药性","authors":"Sophie A Baron , Seydina M Diene , Jean-Marc Rolain","doi":"10.1016/j.humic.2018.08.005","DOIUrl":null,"url":null,"abstract":"<div><p>Human microbiomes are complex ecosystems involving bacteria, viruses, archaea or eukaryotes that are co-evolving in an environment subject to various selective pressures, such as antibiotic administration, diet and/or lifestyle. In this sympatric lifestyle, competition is hard and the synthesis of antibiotic molecules and/or antibiotic resistance genes (ARGs) is one solution that was developed by the organisms to survive. This environment becomes a large source of ARGs for pathogenic bacteria, leading to the risk of infection due to multidrug resistant bacteria. Culture and metagenomics are two complementary methods developed to study these microbiomes in order to better understand the type of bacteria and ARGs present in the human body, as well as the factors that modulate the abundance and variety of these ARGs. The objective of this review was to identify factors that influence the colonization and propagation of multidrug resistant bacteria and/or ARGs, and to define resistance genes and multidrug resistant bacteria that have already been isolated from the human microbiota using culturomics and metagenomics techniques.</p></div>","PeriodicalId":37790,"journal":{"name":"Human Microbiome Journal","volume":"10 ","pages":"Pages 43-52"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.humic.2018.08.005","citationCount":"75","resultStr":"{\"title\":\"Human microbiomes and antibiotic resistance\",\"authors\":\"Sophie A Baron , Seydina M Diene , Jean-Marc Rolain\",\"doi\":\"10.1016/j.humic.2018.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human microbiomes are complex ecosystems involving bacteria, viruses, archaea or eukaryotes that are co-evolving in an environment subject to various selective pressures, such as antibiotic administration, diet and/or lifestyle. In this sympatric lifestyle, competition is hard and the synthesis of antibiotic molecules and/or antibiotic resistance genes (ARGs) is one solution that was developed by the organisms to survive. This environment becomes a large source of ARGs for pathogenic bacteria, leading to the risk of infection due to multidrug resistant bacteria. Culture and metagenomics are two complementary methods developed to study these microbiomes in order to better understand the type of bacteria and ARGs present in the human body, as well as the factors that modulate the abundance and variety of these ARGs. The objective of this review was to identify factors that influence the colonization and propagation of multidrug resistant bacteria and/or ARGs, and to define resistance genes and multidrug resistant bacteria that have already been isolated from the human microbiota using culturomics and metagenomics techniques.</p></div>\",\"PeriodicalId\":37790,\"journal\":{\"name\":\"Human Microbiome Journal\",\"volume\":\"10 \",\"pages\":\"Pages 43-52\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.humic.2018.08.005\",\"citationCount\":\"75\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Microbiome Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2452231718300058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Microbiome Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452231718300058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Human microbiomes are complex ecosystems involving bacteria, viruses, archaea or eukaryotes that are co-evolving in an environment subject to various selective pressures, such as antibiotic administration, diet and/or lifestyle. In this sympatric lifestyle, competition is hard and the synthesis of antibiotic molecules and/or antibiotic resistance genes (ARGs) is one solution that was developed by the organisms to survive. This environment becomes a large source of ARGs for pathogenic bacteria, leading to the risk of infection due to multidrug resistant bacteria. Culture and metagenomics are two complementary methods developed to study these microbiomes in order to better understand the type of bacteria and ARGs present in the human body, as well as the factors that modulate the abundance and variety of these ARGs. The objective of this review was to identify factors that influence the colonization and propagation of multidrug resistant bacteria and/or ARGs, and to define resistance genes and multidrug resistant bacteria that have already been isolated from the human microbiota using culturomics and metagenomics techniques.
期刊介绍:
The innumerable microbes living in and on our bodies are known to affect human wellbeing, but our knowledge of their role is still at the very early stages of understanding. Human Microbiome is a new open access journal dedicated to research on the impact of the microbiome on human health and disease. The journal will publish original research, reviews, comments, human microbe descriptions and genome, and letters. Topics covered will include: the repertoire of human-associated microbes, therapeutic intervention, pathophysiology, experimental models, physiological, geographical, and pathological changes, and technical reports; genomic, metabolomic, transcriptomic, and culturomic approaches are welcome.