利用三氯乙酸和纤维素生物聚合物制备和制造阳离子交换膜的有效方法

Q1 Earth and Planetary Sciences Egyptian Journal of Petroleum Pub Date : 2023-09-01 DOI:10.1016/j.ejpe.2023.06.001
U.F. Kandil , E.O. Taha , E.A. Mahmoud , N.O. Shaker , M. Mahmoud , M.M. Reda Taha
{"title":"利用三氯乙酸和纤维素生物聚合物制备和制造阳离子交换膜的有效方法","authors":"U.F. Kandil ,&nbsp;E.O. Taha ,&nbsp;E.A. Mahmoud ,&nbsp;N.O. Shaker ,&nbsp;M. Mahmoud ,&nbsp;M.M. Reda Taha","doi":"10.1016/j.ejpe.2023.06.001","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a new method for preparing enhanced cation exchange membrane (CEM) for water treatment using cellulose biopolymer. The preparation methodology of CEM membranes was performed in two steps; functionalization followed by fabrication. Firstly, cellulose powder was functionalized with trichloroacetic acid at different reaction times to prepare carboxymethyl tricellulose (CMTC). In the second step, the exchange memberane was fabricated via phase inversion technique using the functionalized cellulosic material and polyethylene glycol as a pore former. The prepared CEM was fully characterized using FTIR, SEM, mechanical properties, and degree of substitution (DS) determination. The morphological microstructure of the CEM membrane was investigated and discussed. The microstructural analysis by FTIR confirmed the functionalization process. The tensile values obtained at different reaction times showed the effectiveness of using trichloroacetic acid in the carboxymethylation and consequently, the stability of the obtained functionalized cellulose. The obtained DS values are higher than that of the commercial CMC and also the published values. It has been observed that the prepared CEM have an average DS value of 1.5 and therefore much higher than the DS value of commercial CMC whose DS ranges between 0.7 and 1.2. The prepared CEM membranes were morphologically investigated by SEM. The SEM photos showed homogeneously distributed small pores on the entire surface of the membrane, and its cross-section is a multilayer with large pores.</p></div>","PeriodicalId":11625,"journal":{"name":"Egyptian Journal of Petroleum","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient methodology for the preparation and fabrication of cation exchange membranes using trichloroacetic acid and cellulose biopolymer\",\"authors\":\"U.F. Kandil ,&nbsp;E.O. Taha ,&nbsp;E.A. Mahmoud ,&nbsp;N.O. Shaker ,&nbsp;M. Mahmoud ,&nbsp;M.M. Reda Taha\",\"doi\":\"10.1016/j.ejpe.2023.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a new method for preparing enhanced cation exchange membrane (CEM) for water treatment using cellulose biopolymer. The preparation methodology of CEM membranes was performed in two steps; functionalization followed by fabrication. Firstly, cellulose powder was functionalized with trichloroacetic acid at different reaction times to prepare carboxymethyl tricellulose (CMTC). In the second step, the exchange memberane was fabricated via phase inversion technique using the functionalized cellulosic material and polyethylene glycol as a pore former. The prepared CEM was fully characterized using FTIR, SEM, mechanical properties, and degree of substitution (DS) determination. The morphological microstructure of the CEM membrane was investigated and discussed. The microstructural analysis by FTIR confirmed the functionalization process. The tensile values obtained at different reaction times showed the effectiveness of using trichloroacetic acid in the carboxymethylation and consequently, the stability of the obtained functionalized cellulose. The obtained DS values are higher than that of the commercial CMC and also the published values. It has been observed that the prepared CEM have an average DS value of 1.5 and therefore much higher than the DS value of commercial CMC whose DS ranges between 0.7 and 1.2. The prepared CEM membranes were morphologically investigated by SEM. The SEM photos showed homogeneously distributed small pores on the entire surface of the membrane, and its cross-section is a multilayer with large pores.</p></div>\",\"PeriodicalId\":11625,\"journal\":{\"name\":\"Egyptian Journal of Petroleum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Journal of Petroleum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110062123000338\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Petroleum","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110062123000338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种利用纤维素生物聚合物制备水处理强化阳离子交换膜的新方法。CEM膜的制备方法分为两个步骤;功能化之后是制造。首先,用三氯乙酸在不同反应时间下对纤维素粉进行功能化,制备羧甲基三纤维素(CMTC)。第二步,利用功能化纤维素材料和聚乙二醇作为孔形成剂,通过相转化技术制备交换膜。用FTIR、SEM、力学性能和取代度(DS)对制备的CEM进行了表征。对CEM膜的形态微观结构进行了研究和讨论。FTIR显微结构分析证实了功能化过程。不同反应时间下得到的拉伸值表明三氯乙酸在羧甲基化过程中的有效性,从而表明所得到的功能化纤维素的稳定性。所得的DS值高于商用CMC的DS值,也高于公布的DS值。经观察,制备的CEM的平均DS值为1.5,远高于商品CMC的DS值,商品CMC的DS值在0.7 ~ 1.2之间。用扫描电镜对制备的CEM膜进行了形貌研究。SEM照片显示,膜的整个表面均匀分布着小孔隙,其横截面是一个具有大孔隙的多层结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient methodology for the preparation and fabrication of cation exchange membranes using trichloroacetic acid and cellulose biopolymer

This article presents a new method for preparing enhanced cation exchange membrane (CEM) for water treatment using cellulose biopolymer. The preparation methodology of CEM membranes was performed in two steps; functionalization followed by fabrication. Firstly, cellulose powder was functionalized with trichloroacetic acid at different reaction times to prepare carboxymethyl tricellulose (CMTC). In the second step, the exchange memberane was fabricated via phase inversion technique using the functionalized cellulosic material and polyethylene glycol as a pore former. The prepared CEM was fully characterized using FTIR, SEM, mechanical properties, and degree of substitution (DS) determination. The morphological microstructure of the CEM membrane was investigated and discussed. The microstructural analysis by FTIR confirmed the functionalization process. The tensile values obtained at different reaction times showed the effectiveness of using trichloroacetic acid in the carboxymethylation and consequently, the stability of the obtained functionalized cellulose. The obtained DS values are higher than that of the commercial CMC and also the published values. It has been observed that the prepared CEM have an average DS value of 1.5 and therefore much higher than the DS value of commercial CMC whose DS ranges between 0.7 and 1.2. The prepared CEM membranes were morphologically investigated by SEM. The SEM photos showed homogeneously distributed small pores on the entire surface of the membrane, and its cross-section is a multilayer with large pores.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Egyptian Journal of Petroleum
Egyptian Journal of Petroleum Earth and Planetary Sciences-Geochemistry and Petrology
CiteScore
7.70
自引率
0.00%
发文量
29
审稿时长
84 days
期刊介绍: Egyptian Journal of Petroleum is addressed to the fields of crude oil, natural gas, energy and related subjects. Its objective is to serve as a forum for research and development covering the following areas: • Sedimentation and petroleum exploration. • Production. • Analysis and testing. • Chemistry and technology of petroleum and natural gas. • Refining and processing. • Catalysis. • Applications and petrochemicals. It also publishes original research papers and reviews in areas relating to synthetic fuels and lubricants - pollution - corrosion - alternate sources of energy - gasification, liquefaction and geology of coal - tar sands and oil shale - biomass as a source of renewable energy. To meet with these requirements the Egyptian Journal of Petroleum welcomes manuscripts and review papers reporting on the state-of-the-art in the aforementioned topics. The Egyptian Journal of Petroleum is also willing to publish the proceedings of petroleum and energy related conferences in a single volume form.
期刊最新文献
Laboratory investigation of removal of total petroleum hydrocarbons from oil-contaminated soil using Santolina plant Inherent radiological hazard and γ-rays shielding properties of black sand minerals Preparation and Characterization of Chemically Converted Graphene From Natural Graphite Exploring CO2-EOR miscibility flooding potential for Horus oil field, Western Desert, Egypt: a simulation-based investigation Identification of petroleum degrading bacteria and the status of oil pool in South of Minas Field, Central Sumatra Basin Indonesia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1