利用勒让德-高斯正交估计迹变差函数

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Brazilian Journal of Probability and Statistics Pub Date : 2022-09-01 DOI:10.1214/22-bjps536
G. Sassi, Chang Chian
{"title":"利用勒让德-高斯正交估计迹变差函数","authors":"G. Sassi, Chang Chian","doi":"10.1214/22-bjps536","DOIUrl":null,"url":null,"abstract":". Functional Data Analysis is known for its application in several fields of science. In some cases, functional datasets are constituted by spatially indexed curves. The primary goal of this paper is to supply a straightforward and precise approach to interpolate these curves, i.e., the aim is to estimate a curve at an unmonitored location. It is proven that the best linear unbiased estimator for this unsampled curve is the solution of a linear system, where the coefficients and the constant terms of the system are formed using a function called trace-variogram. In this paper, we propose using Legendre-Gauss quadrature to estimate the trace-variogram. This estimator’s suitable numerical properties are shown in simulation studies for normal and non-normal datasets. Simulation results indicated that the proposed methodology outperforms the established estimation procedure. An R package was built and is available at the CRAN repository. The novel estimation methodology is illustrated with a real dataset on temperature curves from 35 weather stations in Canada.","PeriodicalId":51242,"journal":{"name":"Brazilian Journal of Probability and Statistics","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of trace-variogram using Legendre–Gauss quadrature\",\"authors\":\"G. Sassi, Chang Chian\",\"doi\":\"10.1214/22-bjps536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Functional Data Analysis is known for its application in several fields of science. In some cases, functional datasets are constituted by spatially indexed curves. The primary goal of this paper is to supply a straightforward and precise approach to interpolate these curves, i.e., the aim is to estimate a curve at an unmonitored location. It is proven that the best linear unbiased estimator for this unsampled curve is the solution of a linear system, where the coefficients and the constant terms of the system are formed using a function called trace-variogram. In this paper, we propose using Legendre-Gauss quadrature to estimate the trace-variogram. This estimator’s suitable numerical properties are shown in simulation studies for normal and non-normal datasets. Simulation results indicated that the proposed methodology outperforms the established estimation procedure. An R package was built and is available at the CRAN repository. The novel estimation methodology is illustrated with a real dataset on temperature curves from 35 weather stations in Canada.\",\"PeriodicalId\":51242,\"journal\":{\"name\":\"Brazilian Journal of Probability and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Probability and Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-bjps536\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Probability and Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-bjps536","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

。功能数据分析以其在几个科学领域的应用而闻名。在某些情况下,功能数据集由空间索引曲线组成。本文的主要目标是提供一种直接而精确的方法来插值这些曲线,即,目的是在未监测的位置估计曲线。证明了该无采样曲线的最佳线性无偏估计是线性系统的解,其中系统的系数和常数项由一个称为迹变函数的函数构成。本文提出用勒让德-高斯正交法估计迹变函数。对正态和非正态数据集的仿真研究表明了该估计器的数值特性。仿真结果表明,该方法优于现有的估计方法。我们构建了一个R包,并在CRAN存储库中提供。用加拿大35个气象站的温度曲线的真实数据集说明了这种新的估计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of trace-variogram using Legendre–Gauss quadrature
. Functional Data Analysis is known for its application in several fields of science. In some cases, functional datasets are constituted by spatially indexed curves. The primary goal of this paper is to supply a straightforward and precise approach to interpolate these curves, i.e., the aim is to estimate a curve at an unmonitored location. It is proven that the best linear unbiased estimator for this unsampled curve is the solution of a linear system, where the coefficients and the constant terms of the system are formed using a function called trace-variogram. In this paper, we propose using Legendre-Gauss quadrature to estimate the trace-variogram. This estimator’s suitable numerical properties are shown in simulation studies for normal and non-normal datasets. Simulation results indicated that the proposed methodology outperforms the established estimation procedure. An R package was built and is available at the CRAN repository. The novel estimation methodology is illustrated with a real dataset on temperature curves from 35 weather stations in Canada.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
10.00%
发文量
30
审稿时长
>12 weeks
期刊介绍: The Brazilian Journal of Probability and Statistics aims to publish high quality research papers in applied probability, applied statistics, computational statistics, mathematical statistics, probability theory and stochastic processes. More specifically, the following types of contributions will be considered: (i) Original articles dealing with methodological developments, comparison of competing techniques or their computational aspects. (ii) Original articles developing theoretical results. (iii) Articles that contain novel applications of existing methodologies to practical problems. For these papers the focus is in the importance and originality of the applied problem, as well as, applications of the best available methodologies to solve it. (iv) Survey articles containing a thorough coverage of topics of broad interest to probability and statistics. The journal will occasionally publish book reviews, invited papers and essays on the teaching of statistics.
期刊最新文献
Multivariate zero-inflated Bell–Touchard distribution for multivariate counts: An application to COVID-related data Unit gamma regression models for correlated bounded data Two-stage Walsh-average-based robust estimation and variable selection for partially linear additive spatial autoregressive models On quasi Pólya thinning operator Divide-and-conquer Metropolis–Hastings samplers with matched samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1