监测经济指标短期趋势的方向

IF 0.8 4区 经济学 Q3 ECONOMICS Econometric Reviews Pub Date : 2023-05-28 DOI:10.1080/07474938.2023.2209008
E. Dagum, S. Bianconcini
{"title":"监测经济指标短期趋势的方向","authors":"E. Dagum, S. Bianconcini","doi":"10.1080/07474938.2023.2209008","DOIUrl":null,"url":null,"abstract":"Abstract Socioeconomic indicators have long been used by official statistical agencies to analyze and assess the current stage at which the economy stands via the application of linear filters used in conjunction with seasonal adjustment procedures. In this study, we propose a new set of symmetric and asymmetric weights that offer substantial gains in real-time by providing timely and more accurate information for detecting short-term trends with respect to filters commonly applied by statistical agencies. We compare the new filters to the classical ones through application to indicators of the US economy, which remains the linchpin of the global economic system. To assess the superiority of the proposed filters, we develop and evaluate explicit tests of the null hypothesis of no difference in revision accuracy of two competing filters. Furthermore, asymptotic and exact finite-sample tests are proposed and illustrated to assess if two compared filters have equal probabilities of failing to detect turning points at different time horizons after their occurrence.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"421 - 440"},"PeriodicalIF":0.8000,"publicationDate":"2023-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Monitoring the direction of the short-term trend of economic indicators\",\"authors\":\"E. Dagum, S. Bianconcini\",\"doi\":\"10.1080/07474938.2023.2209008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Socioeconomic indicators have long been used by official statistical agencies to analyze and assess the current stage at which the economy stands via the application of linear filters used in conjunction with seasonal adjustment procedures. In this study, we propose a new set of symmetric and asymmetric weights that offer substantial gains in real-time by providing timely and more accurate information for detecting short-term trends with respect to filters commonly applied by statistical agencies. We compare the new filters to the classical ones through application to indicators of the US economy, which remains the linchpin of the global economic system. To assess the superiority of the proposed filters, we develop and evaluate explicit tests of the null hypothesis of no difference in revision accuracy of two competing filters. Furthermore, asymptotic and exact finite-sample tests are proposed and illustrated to assess if two compared filters have equal probabilities of failing to detect turning points at different time horizons after their occurrence.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"421 - 440\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2209008\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2209008","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要官方统计机构长期以来一直使用社会经济指标,通过结合季节性调整程序使用线性滤波器来分析和评估当前经济阶段。在这项研究中,我们提出了一组新的对称和非对称权重,通过提供及时、更准确的信息来检测统计机构常用的滤波器的短期趋势,可以实时获得显著的收益。我们通过应用于美国经济指标,将新的过滤器与经典过滤器进行了比较,美国经济仍然是全球经济体系的关键。为了评估所提出的滤波器的优越性,我们开发并评估了两个竞争滤波器的修正精度没有差异的零假设的显式检验。此外,还提出并举例说明了渐近和精确的有限样本检验,以评估两个比较滤波器在出现转折点后,在不同时间范围内未能检测到转折点的概率是否相等。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Monitoring the direction of the short-term trend of economic indicators
Abstract Socioeconomic indicators have long been used by official statistical agencies to analyze and assess the current stage at which the economy stands via the application of linear filters used in conjunction with seasonal adjustment procedures. In this study, we propose a new set of symmetric and asymmetric weights that offer substantial gains in real-time by providing timely and more accurate information for detecting short-term trends with respect to filters commonly applied by statistical agencies. We compare the new filters to the classical ones through application to indicators of the US economy, which remains the linchpin of the global economic system. To assess the superiority of the proposed filters, we develop and evaluate explicit tests of the null hypothesis of no difference in revision accuracy of two competing filters. Furthermore, asymptotic and exact finite-sample tests are proposed and illustrated to assess if two compared filters have equal probabilities of failing to detect turning points at different time horizons after their occurrence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Econometric Reviews
Econometric Reviews 管理科学-数学跨学科应用
CiteScore
1.70
自引率
0.00%
发文量
27
审稿时长
>12 weeks
期刊介绍: Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.
期刊最新文献
Estimation of random functions proxying for unobservables Bootstrap inference on a factor model based average treatment effects estimator Using machine learning for efficient flexible regression adjustment in economic experiments Lag order selection for long-run variance estimation in econometrics Selecting the number of factors in approximate factor models using group variable regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1