{"title":"基于生态捕食-捕食方法的动力学模型在乌拉圭大规模畜牧业中的应用:饲料短缺的经济评估","authors":"F. Dieguez, H. Fort","doi":"10.3934/JDG.2019009","DOIUrl":null,"url":null,"abstract":"Extensive livestock farmers have to manage climate risk. Therefore, there is a need to generate quantitative tools to evaluate the biophysical and economic impacts on extensive farming based on native grasslands. We present an ecological model based on the predator-prey approach, used to simulate the effect of forage deficiency on the farm's economic performance. Different scenarios of animal stocking rate and carrying capacity of grassland are considered to assess the impact of forage deficiency in spring. Results suggest a cubic response of Gross product per hectare as function of Gross margin, according Mott's theoretical model for meat production on grassland systems in response to stocking rate. The maximum value of this cubic response function strongly depends on the initial grass height and climate scenarios. The initial grass height is critical to maximize secondary productivity and farm economic results. Scenarios including grass reserves can buffer the deficiency on grass growth rates and pasture offer, as occurs in drought periods at the time when farmers try to make animals gain liveweight. Our analysis reinforces the usefulness of forage assignment adjustment by modulating stocking rate to improve liveweight gain and economic results under climate change conditions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2019-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"AN application of a dynamical model with ecological predator-prey approach to extensive livestock farming in uruguay: Economical assessment on forage deficiency\",\"authors\":\"F. Dieguez, H. Fort\",\"doi\":\"10.3934/JDG.2019009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive livestock farmers have to manage climate risk. Therefore, there is a need to generate quantitative tools to evaluate the biophysical and economic impacts on extensive farming based on native grasslands. We present an ecological model based on the predator-prey approach, used to simulate the effect of forage deficiency on the farm's economic performance. Different scenarios of animal stocking rate and carrying capacity of grassland are considered to assess the impact of forage deficiency in spring. Results suggest a cubic response of Gross product per hectare as function of Gross margin, according Mott's theoretical model for meat production on grassland systems in response to stocking rate. The maximum value of this cubic response function strongly depends on the initial grass height and climate scenarios. The initial grass height is critical to maximize secondary productivity and farm economic results. Scenarios including grass reserves can buffer the deficiency on grass growth rates and pasture offer, as occurs in drought periods at the time when farmers try to make animals gain liveweight. Our analysis reinforces the usefulness of forage assignment adjustment by modulating stocking rate to improve liveweight gain and economic results under climate change conditions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2019-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/JDG.2019009\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/JDG.2019009","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
AN application of a dynamical model with ecological predator-prey approach to extensive livestock farming in uruguay: Economical assessment on forage deficiency
Extensive livestock farmers have to manage climate risk. Therefore, there is a need to generate quantitative tools to evaluate the biophysical and economic impacts on extensive farming based on native grasslands. We present an ecological model based on the predator-prey approach, used to simulate the effect of forage deficiency on the farm's economic performance. Different scenarios of animal stocking rate and carrying capacity of grassland are considered to assess the impact of forage deficiency in spring. Results suggest a cubic response of Gross product per hectare as function of Gross margin, according Mott's theoretical model for meat production on grassland systems in response to stocking rate. The maximum value of this cubic response function strongly depends on the initial grass height and climate scenarios. The initial grass height is critical to maximize secondary productivity and farm economic results. Scenarios including grass reserves can buffer the deficiency on grass growth rates and pasture offer, as occurs in drought periods at the time when farmers try to make animals gain liveweight. Our analysis reinforces the usefulness of forage assignment adjustment by modulating stocking rate to improve liveweight gain and economic results under climate change conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.