晶面工程和串联催化协同提高掺银氧化亚铜电还原CO2为C2H4的选择性

Gang Dong , Chuang Xue , Meng Li , Tiantian Zhang , Dongsheng Geng , Li-Min Liu
{"title":"晶面工程和串联催化协同提高掺银氧化亚铜电还原CO2为C2H4的选择性","authors":"Gang Dong ,&nbsp;Chuang Xue ,&nbsp;Meng Li ,&nbsp;Tiantian Zhang ,&nbsp;Dongsheng Geng ,&nbsp;Li-Min Liu","doi":"10.1016/j.matre.2023.100195","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical CO<sub>2</sub> reduction to C<sub>2</sub>H<sub>4</sub> can provide a sustainable route to reduce globally accelerating CO<sub>2</sub> emissions and produce energy-rich chemical feedstocks. However, the poor selectivity in C<sub>2</sub>H<sub>4</sub> electrosynthesis limits its implementation in industrially interesting processes. Herein, we report a composite structured catalyst composed of Ag and Cu<sub>2</sub>O with different crystal faces to achieve highly efficient reduction of CO<sub>2</sub> to C<sub>2</sub>H<sub>4</sub>. The catalyst composed of Ag and octahedral Cu<sub>2</sub>O enclosed with (111) facet exhibits the best CO<sub>2</sub> electroreduction performance, with the Faradaic efficiency (<em>FE</em>) and partial current density reaching 66.8% and 17.8 mA cm<sup>−2</sup> for C<sub>2</sub>H<sub>4</sub> product at −1.2 V<sub>RHE</sub> in 0.5 M KHCO<sub>3</sub>, respectively. Physical characterization and electrochemical test analysis indicate that the high selectivity for C<sub>2</sub>H<sub>4</sub> product stems from the synergistic effect of crystal faces control engineering and tandem catalysis. Specifically, Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution; subsequently, C–C coupling is promoted on the intimate surface of Cu<sub>2</sub>O with facet-dependent selectivity. The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO<sub>2</sub> reduction reaction to generate C<sub>2+</sub> products.</p></div>","PeriodicalId":61638,"journal":{"name":"材料导报:能源(英文)","volume":"3 2","pages":"Article 100195"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Synergetic enhancement of selectivity for electroreduction of CO2 to C2H4 by crystal facet engineering and tandem catalysis over silver-incorporated-cuprous oxides\",\"authors\":\"Gang Dong ,&nbsp;Chuang Xue ,&nbsp;Meng Li ,&nbsp;Tiantian Zhang ,&nbsp;Dongsheng Geng ,&nbsp;Li-Min Liu\",\"doi\":\"10.1016/j.matre.2023.100195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Electrochemical CO<sub>2</sub> reduction to C<sub>2</sub>H<sub>4</sub> can provide a sustainable route to reduce globally accelerating CO<sub>2</sub> emissions and produce energy-rich chemical feedstocks. However, the poor selectivity in C<sub>2</sub>H<sub>4</sub> electrosynthesis limits its implementation in industrially interesting processes. Herein, we report a composite structured catalyst composed of Ag and Cu<sub>2</sub>O with different crystal faces to achieve highly efficient reduction of CO<sub>2</sub> to C<sub>2</sub>H<sub>4</sub>. The catalyst composed of Ag and octahedral Cu<sub>2</sub>O enclosed with (111) facet exhibits the best CO<sub>2</sub> electroreduction performance, with the Faradaic efficiency (<em>FE</em>) and partial current density reaching 66.8% and 17.8 mA cm<sup>−2</sup> for C<sub>2</sub>H<sub>4</sub> product at −1.2 V<sub>RHE</sub> in 0.5 M KHCO<sub>3</sub>, respectively. Physical characterization and electrochemical test analysis indicate that the high selectivity for C<sub>2</sub>H<sub>4</sub> product stems from the synergistic effect of crystal faces control engineering and tandem catalysis. Specifically, Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution; subsequently, C–C coupling is promoted on the intimate surface of Cu<sub>2</sub>O with facet-dependent selectivity. The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO<sub>2</sub> reduction reaction to generate C<sub>2+</sub> products.</p></div>\",\"PeriodicalId\":61638,\"journal\":{\"name\":\"材料导报:能源(英文)\",\"volume\":\"3 2\",\"pages\":\"Article 100195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"材料导报:能源(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666935823000320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"材料导报:能源(英文)","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666935823000320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

电化学CO2还原为C2H4可以为减少全球加速的CO2排放和生产高能量化工原料提供可持续的途径。然而,C2H4电合成的选择性差限制了其在工业上的应用。本文报道了一种由不同晶面的Ag和Cu2O组成的复合结构催化剂,可以高效地将CO2还原为C2H4。Ag和(111)面封闭的八面体Cu2O组成的催化剂表现出最佳的CO2电还原性能,在- 1.2 VRHE和0.5 M KHCO3条件下,C2H4产物的法拉第效率(FE)和分电流密度分别达到66.8%和17.8 mA cm−2。物理表征和电化学测试分析表明,C2H4产物的高选择性源于晶面控制工程和串联催化的协同作用。Ag可以通过抑制析氢提供最佳的CO中间体可用性;随后,C-C在Cu2O的亲密表面以面依赖的选择性被促进。研究结果对设计高效的多组分催化剂,提高电化学CO2还原反应生成C2+产物的选择性具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergetic enhancement of selectivity for electroreduction of CO2 to C2H4 by crystal facet engineering and tandem catalysis over silver-incorporated-cuprous oxides

Electrochemical CO2 reduction to C2H4 can provide a sustainable route to reduce globally accelerating CO2 emissions and produce energy-rich chemical feedstocks. However, the poor selectivity in C2H4 electrosynthesis limits its implementation in industrially interesting processes. Herein, we report a composite structured catalyst composed of Ag and Cu2O with different crystal faces to achieve highly efficient reduction of CO2 to C2H4. The catalyst composed of Ag and octahedral Cu2O enclosed with (111) facet exhibits the best CO2 electroreduction performance, with the Faradaic efficiency (FE) and partial current density reaching 66.8% and 17.8 mA cm−2 for C2H4 product at −1.2 VRHE in 0.5 M KHCO3, respectively. Physical characterization and electrochemical test analysis indicate that the high selectivity for C2H4 product stems from the synergistic effect of crystal faces control engineering and tandem catalysis. Specifically, Ag can provide optimal availability of CO intermediate by suppressing hydrogen evolution; subsequently, C–C coupling is promoted on the intimate surface of Cu2O with facet-dependent selectivity. The insights gained from this work may be beneficial for designing efficient multicomponent catalysts for improving the selectivity of electrochemical CO2 reduction reaction to generate C2+ products.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
材料导报:能源(英文)
材料导报:能源(英文) Renewable Energy, Sustainability and the Environment, Nanotechnology
CiteScore
13.00
自引率
0.00%
发文量
0
审稿时长
50 days
期刊最新文献
Outside Front Cover Contents Advancements in biomass gasification and catalytic tar-cracking technologies Ionic buffer layer design for stabilizing Zn electrodes in aqueous Zn-based batteries Novel N-doped carbon nanotubes impregnated Mn spheres with polydopamine coating as an efficient polysulfide immobilizer for Li-S batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1