Johannes Schneider, Rene Abraham, Christian Meske, J. Brocke
{"title":"企业人工智能治理","authors":"Johannes Schneider, Rene Abraham, Christian Meske, J. Brocke","doi":"10.1080/10580530.2022.2085825","DOIUrl":null,"url":null,"abstract":"ABSTRACT While artificial intelligence (AI) governance is thoroughly discussed on a philosophical, societal, and regulatory level, few works target companies. We address this gap by deriving a conceptual framework from literature. We decompose AI governance into governance of data, machine learning models, and AI systems along the dimensions of who, what, and how “is governed.” This decomposition enables the evolution of existing governance structures. Novel, business-specific aspects include measuring data value and novel AI governance roles.","PeriodicalId":56289,"journal":{"name":"Information Systems Management","volume":"40 1","pages":"229 - 249"},"PeriodicalIF":3.0000,"publicationDate":"2020-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Artificial Intelligence Governance For Businesses\",\"authors\":\"Johannes Schneider, Rene Abraham, Christian Meske, J. Brocke\",\"doi\":\"10.1080/10580530.2022.2085825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT While artificial intelligence (AI) governance is thoroughly discussed on a philosophical, societal, and regulatory level, few works target companies. We address this gap by deriving a conceptual framework from literature. We decompose AI governance into governance of data, machine learning models, and AI systems along the dimensions of who, what, and how “is governed.” This decomposition enables the evolution of existing governance structures. Novel, business-specific aspects include measuring data value and novel AI governance roles.\",\"PeriodicalId\":56289,\"journal\":{\"name\":\"Information Systems Management\",\"volume\":\"40 1\",\"pages\":\"229 - 249\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2020-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/10580530.2022.2085825\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Management","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/10580530.2022.2085825","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
ABSTRACT While artificial intelligence (AI) governance is thoroughly discussed on a philosophical, societal, and regulatory level, few works target companies. We address this gap by deriving a conceptual framework from literature. We decompose AI governance into governance of data, machine learning models, and AI systems along the dimensions of who, what, and how “is governed.” This decomposition enables the evolution of existing governance structures. Novel, business-specific aspects include measuring data value and novel AI governance roles.
期刊介绍:
Information Systems Management (ISM) is the on-going exchange of academic research, best practices, and insights based on managerial experience. The journal’s goal is to advance the practice of information systems management through this exchange.
To meet this goal, ISM features themed papers examining a particular topic. In addition to themed papers, the journal regularly publishes on the following topics in IS management.
Achieving Strategic IT Alignment and Capabilities
IT Governance
CIO and IT Leadership Roles
IT Sourcing
Planning and Managing an Enterprise Infrastructure
IT Security
Selecting and Delivering Application Solutions
Portfolio Management
Managing Complex IT Projects
E-Business Technologies
Supporting Knowledge Work
The target readership includes both academics and practitioners. Hence, submissions integrating research and practice, and providing implications for both, are encouraged.