{"title":"在日冕中传播的慢磁声波辐射谱中17.1 nm处的铁IX线","authors":"S. G. Mamedov, Z. F. Aliyeva, K. I. Alisheva","doi":"10.3103/S0884591321060064","DOIUrl":null,"url":null,"abstract":"<p>Profiles of the Fe IX line at a wavelength of λ = 17.1 nm in the radiation spectrum of slow magneto-acoustic waves, propagating in coronal loops, are calculated under conditions of an optically thin layer and a constant density. The parameter values used in calculations of the line profiles are as follows: the amplitude of the velocity of particles’ displacements in a wave <i>v</i><sub>0</sub> = 10 km/s, the width of the coronal loop is 2000 and 5000 km, the wavelength Λ = 20 000 km and 50 000 km, and the value of the Doppler width Δλ<sub>d</sub> = 1 pm; the values for the angle of view and the wave phases were varied. The true value of the energy flux density is 622 erg/cm<sup>2</sup>s. The values of the energy flux density obtained in calculations strongly depend on the angle of view θ and the wave phase: they range from 0 and, when the values of θ are large, to 2000 erg/cm<sup>2</sup>s. The values of the Doppler velocities <i>v</i><sub>d</sub> and the velocities of nonthermal motions <i>v</i><sub>nt</sub> take maximal values of ~12 km/s at small angles θ and almost vanish at large angles θ. When the angle of view is small (θ < 30°), a weak blue asymmetry is noticeable. When the angle of view is large (θ > 30°), the asymmetry is almost invisible.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"37 6","pages":"300 - 309"},"PeriodicalIF":0.5000,"publicationDate":"2021-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Fe IX Line at 17.1 nm in the Radiation Spectrum of Slow Magneto-Acoustic Waves Propagating in the Solar Corona\",\"authors\":\"S. G. Mamedov, Z. F. Aliyeva, K. I. Alisheva\",\"doi\":\"10.3103/S0884591321060064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Profiles of the Fe IX line at a wavelength of λ = 17.1 nm in the radiation spectrum of slow magneto-acoustic waves, propagating in coronal loops, are calculated under conditions of an optically thin layer and a constant density. The parameter values used in calculations of the line profiles are as follows: the amplitude of the velocity of particles’ displacements in a wave <i>v</i><sub>0</sub> = 10 km/s, the width of the coronal loop is 2000 and 5000 km, the wavelength Λ = 20 000 km and 50 000 km, and the value of the Doppler width Δλ<sub>d</sub> = 1 pm; the values for the angle of view and the wave phases were varied. The true value of the energy flux density is 622 erg/cm<sup>2</sup>s. The values of the energy flux density obtained in calculations strongly depend on the angle of view θ and the wave phase: they range from 0 and, when the values of θ are large, to 2000 erg/cm<sup>2</sup>s. The values of the Doppler velocities <i>v</i><sub>d</sub> and the velocities of nonthermal motions <i>v</i><sub>nt</sub> take maximal values of ~12 km/s at small angles θ and almost vanish at large angles θ. When the angle of view is small (θ < 30°), a weak blue asymmetry is noticeable. When the angle of view is large (θ > 30°), the asymmetry is almost invisible.</p>\",\"PeriodicalId\":681,\"journal\":{\"name\":\"Kinematics and Physics of Celestial Bodies\",\"volume\":\"37 6\",\"pages\":\"300 - 309\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kinematics and Physics of Celestial Bodies\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0884591321060064\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591321060064","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
The Fe IX Line at 17.1 nm in the Radiation Spectrum of Slow Magneto-Acoustic Waves Propagating in the Solar Corona
Profiles of the Fe IX line at a wavelength of λ = 17.1 nm in the radiation spectrum of slow magneto-acoustic waves, propagating in coronal loops, are calculated under conditions of an optically thin layer and a constant density. The parameter values used in calculations of the line profiles are as follows: the amplitude of the velocity of particles’ displacements in a wave v0 = 10 km/s, the width of the coronal loop is 2000 and 5000 km, the wavelength Λ = 20 000 km and 50 000 km, and the value of the Doppler width Δλd = 1 pm; the values for the angle of view and the wave phases were varied. The true value of the energy flux density is 622 erg/cm2s. The values of the energy flux density obtained in calculations strongly depend on the angle of view θ and the wave phase: they range from 0 and, when the values of θ are large, to 2000 erg/cm2s. The values of the Doppler velocities vd and the velocities of nonthermal motions vnt take maximal values of ~12 km/s at small angles θ and almost vanish at large angles θ. When the angle of view is small (θ < 30°), a weak blue asymmetry is noticeable. When the angle of view is large (θ > 30°), the asymmetry is almost invisible.
期刊介绍:
Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.