盐促进炎症:机制学见解

E. Ros
{"title":"盐促进炎症:机制学见解","authors":"E. Ros","doi":"10.20455/ros.2022.n.801","DOIUrl":null,"url":null,"abstract":"It has been well established that high dietary salt intake promotes inflammation and contributes to the pathogenesis of many inflammatory disorders, especially cardiovascular diseases. Several recent studies published in prestigious journals have further elucidated the molecular pathways underlying high salt-induced inflammation, including identification of the involvement of mitochondrial electron transport chain and the Nrf2-SIRT3 signaling axis. These novel findings provide important mechanistic insights and offer potential opportunities for developing modalities for intervention of high salt-associated pathophysiological conditions.\n(First online: March 1, 2022)\nREFERENCES\n\nThornton SN. Sodium intake, cardiovascular disease, and physiology. Nat Rev Cardiol 2018; 15(8):497. doi: https://dx.doi.org/10.1038/s41569-018-0047-3\nCook NR, He FJ, MacGregor GA, Graudal N. Sodium and health-concordance and controversy. BMJ 2020; 369:m2440. doi: https://dx.doi.org/10.1136/bmj.m2440\nWu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496(7446):513–7. doi: https://dx.doi.org/10.1038/nature11984\nWilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551(7682):585–9. doi: https://dx.doi.org/10.1038/nature24628\nZhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25(8):893–910. doi: https://dx.doi.org/10.1038/cr.2015.87\nGeisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, et al. Salt Transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation 2021; 144(2):144–58. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788\nRos EO. Sodium ion regulates mitochondrial ROS. React Oxyg Species (Apex) 2021; 11:n5–n6. doi: https://dx.doi.org/10.20455/ros.2021.n.805.\nShadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560–9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001\nLanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA 2018; 115(12):3138–43. doi: https://dx.doi.org/10.1073/pnas.1713837115\nGao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600\nDikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4):439–52. doi: https://dx.doi.org/10.1161/CIRCRESAHA.119.315767\nKim A, Koo JH, Lee JM, Joo MS, Kim TH, Kim H, et al. NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced liver injury. FASEB J 2022; 36(3):e22170. doi: https://dx.doi.org/10.1096/fj.202101470R\n","PeriodicalId":91793,"journal":{"name":"Reactive oxygen species (Apex, N.C.)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Salt Promotes Inflammation: Mechanistic Insights\",\"authors\":\"E. Ros\",\"doi\":\"10.20455/ros.2022.n.801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It has been well established that high dietary salt intake promotes inflammation and contributes to the pathogenesis of many inflammatory disorders, especially cardiovascular diseases. Several recent studies published in prestigious journals have further elucidated the molecular pathways underlying high salt-induced inflammation, including identification of the involvement of mitochondrial electron transport chain and the Nrf2-SIRT3 signaling axis. These novel findings provide important mechanistic insights and offer potential opportunities for developing modalities for intervention of high salt-associated pathophysiological conditions.\\n(First online: March 1, 2022)\\nREFERENCES\\n\\nThornton SN. Sodium intake, cardiovascular disease, and physiology. Nat Rev Cardiol 2018; 15(8):497. doi: https://dx.doi.org/10.1038/s41569-018-0047-3\\nCook NR, He FJ, MacGregor GA, Graudal N. Sodium and health-concordance and controversy. BMJ 2020; 369:m2440. doi: https://dx.doi.org/10.1136/bmj.m2440\\nWu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496(7446):513–7. doi: https://dx.doi.org/10.1038/nature11984\\nWilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551(7682):585–9. doi: https://dx.doi.org/10.1038/nature24628\\nZhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25(8):893–910. doi: https://dx.doi.org/10.1038/cr.2015.87\\nGeisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, et al. Salt Transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation 2021; 144(2):144–58. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788\\nRos EO. Sodium ion regulates mitochondrial ROS. React Oxyg Species (Apex) 2021; 11:n5–n6. doi: https://dx.doi.org/10.20455/ros.2021.n.805.\\nShadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560–9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001\\nLanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA 2018; 115(12):3138–43. doi: https://dx.doi.org/10.1073/pnas.1713837115\\nGao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600\\nDikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4):439–52. doi: https://dx.doi.org/10.1161/CIRCRESAHA.119.315767\\nKim A, Koo JH, Lee JM, Joo MS, Kim TH, Kim H, et al. NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced liver injury. FASEB J 2022; 36(3):e22170. doi: https://dx.doi.org/10.1096/fj.202101470R\\n\",\"PeriodicalId\":91793,\"journal\":{\"name\":\"Reactive oxygen species (Apex, N.C.)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactive oxygen species (Apex, N.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20455/ros.2022.n.801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactive oxygen species (Apex, N.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20455/ros.2022.n.801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高盐饮食摄入促进炎症,并有助于许多炎症性疾病的发病机制,特别是心血管疾病。最近发表在著名期刊上的几项研究进一步阐明了高盐诱导炎症的分子途径,包括线粒体电子传递链和Nrf2-SIRT3信号轴的参与。这些新发现提供了重要的机制见解,并为开发干预高盐相关病理生理状况的模式提供了潜在的机会。(首次在线:2022年3月1日)钠摄入量、心血管疾病和生理。Nat Rev Cardiol 2018;15(8): 497。doi: https://dx.doi.org/10.1038/s41569-018-0047-3Cook NR,何方军,MacGregor GA, Graudal N.钠与健康的一致性和争议。BMJ 2020;369: m2440。doi: https://dx.doi.org/10.1136/bmj.m2440Wu C, Yosef N, Thalhamer T,朱翀,肖松,Kishi Y,等。诱导型盐感激酶SGK1诱导致病性TH17细胞。自然2013;496(7446): 513 - 7。doi: https://dx.doi.org/10.1038/nature11984Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H,等。盐反应性肠道共生调节TH17轴和疾病。自然2017;551(7682): 585 - 9。doi: https://dx.doi.org/10.1038/nature24628Zhang王文成,郑晓军,杜立军,孙建勇,沈志祥,石超,等。高盐启动巨噬细胞的特定激活状态,M(Na)。Cell Res 2015;25(8): 893 - 910。doi: https://dx.doi.org/10.1038/cr.2015.87Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T,等。盐暂时抑制单核吞噬细胞的线粒体能量。发行量2021;144(2): 144 - 58。doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788Ros EO。钠离子调控线粒体活性氧。React Oxyg Species (Apex) 2021;11: n5-n6。doi: https://dx.doi.org/10.20455/ros.2021.n.805.Shadel GS, Horvath TL.线粒体ROS信号在机体内稳态。细胞2015;163(3): 560 - 9。doi: https://dx.doi.org/10.1016/j.cell.2015.10.001Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T,等。高盐摄入通过刺激内源性果糖的产生和代谢导致小鼠瘦素抵抗和肥胖。美国国家科学促进会2018;115(12): 3138 - 43。doi: https://dx.doi.org/10.1073/pnas.1713837115Gao P,尤明,李磊,张强,方鑫,魏鑫,等。盐诱导的肝脏炎症记忆通过表观遗传调节SIRT3参与心血管损伤。发行量2022;145(5): 375 - 91。doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG等。线粒体去乙酰化酶Sirt3减少血管功能障碍和高血压,而原发性高血压中Sirt3的消耗与血管炎症和氧化应激有关。Circ Res 2020;126(4): 439 - 52。doi: https://dx.doi.org/10.1161/CIRCRESAHA.119.315767Kim A, Koo JH, Lee JM, Joo MS, Kim TH, Kim H,等。nrf2介导的SIRT3诱导可保护肝细胞免受内质网应激性肝损伤。fasb j 2022;36 (3): e22170。doi: https://dx.doi.org/10.1096/fj.202101470R
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Salt Promotes Inflammation: Mechanistic Insights
It has been well established that high dietary salt intake promotes inflammation and contributes to the pathogenesis of many inflammatory disorders, especially cardiovascular diseases. Several recent studies published in prestigious journals have further elucidated the molecular pathways underlying high salt-induced inflammation, including identification of the involvement of mitochondrial electron transport chain and the Nrf2-SIRT3 signaling axis. These novel findings provide important mechanistic insights and offer potential opportunities for developing modalities for intervention of high salt-associated pathophysiological conditions. (First online: March 1, 2022) REFERENCES Thornton SN. Sodium intake, cardiovascular disease, and physiology. Nat Rev Cardiol 2018; 15(8):497. doi: https://dx.doi.org/10.1038/s41569-018-0047-3 Cook NR, He FJ, MacGregor GA, Graudal N. Sodium and health-concordance and controversy. BMJ 2020; 369:m2440. doi: https://dx.doi.org/10.1136/bmj.m2440 Wu C, Yosef N, Thalhamer T, Zhu C, Xiao S, Kishi Y, et al. Induction of pathogenic TH17 cells by inducible salt-sensing kinase SGK1. Nature 2013; 496(7446):513–7. doi: https://dx.doi.org/10.1038/nature11984 Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, et al. Salt-responsive gut commensal modulates TH17 axis and disease. Nature 2017; 551(7682):585–9. doi: https://dx.doi.org/10.1038/nature24628 Zhang WC, Zheng XJ, Du LJ, Sun JY, Shen ZX, Shi C, et al. High salt primes a specific activation state of macrophages, M(Na). Cell Res 2015; 25(8):893–910. doi: https://dx.doi.org/10.1038/cr.2015.87 Geisberger S, Bartolomaeus H, Neubert P, Willebrand R, Zasada C, Bartolomaeus T, et al. Salt Transiently inhibits mitochondrial energetics in mononuclear phagocytes. Circulation 2021; 144(2):144–58. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.120.052788 Ros EO. Sodium ion regulates mitochondrial ROS. React Oxyg Species (Apex) 2021; 11:n5–n6. doi: https://dx.doi.org/10.20455/ros.2021.n.805. Shadel GS, Horvath TL. Mitochondrial ROS signaling in organismal homeostasis. Cell 2015; 163(3):560–9. doi: https://dx.doi.org/10.1016/j.cell.2015.10.001 Lanaspa MA, Kuwabara M, Andres-Hernando A, Li N, Cicerchi C, Jensen T, et al. High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proc Natl Acad Sci USA 2018; 115(12):3138–43. doi: https://dx.doi.org/10.1073/pnas.1713837115 Gao P, You M, Li L, Zhang Q, Fang X, Wei X, et al. Salt-Induced hepatic inflammatory memory contributes to cardiovascular damage through epigenetic modulation of SIRT3. Circulation 2022; 145(5):375–91. doi: https://dx.doi.org/10.1161/CIRCULATIONAHA.121.055600 Dikalova AE, Pandey A, Xiao L, Arslanbaeva L, Sidorova T, Lopez MG, et al. Mitochondrial deacetylase Sirt3 reduces vascular dysfunction and hypertension while Sirt3 depletion in essential hypertension is linked to vascular inflammation and oxidative stress. Circ Res 2020; 126(4):439–52. doi: https://dx.doi.org/10.1161/CIRCRESAHA.119.315767 Kim A, Koo JH, Lee JM, Joo MS, Kim TH, Kim H, et al. NRF2-mediated SIRT3 induction protects hepatocytes from ER stress-induced liver injury. FASEB J 2022; 36(3):e22170. doi: https://dx.doi.org/10.1096/fj.202101470R
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nrf2 Signaling in Modulating Pain and Inflammation Vitamin C Enhances Anticancer Immunity Vitamin C: Novel Functions in Bone Homeostasis Copper Redox Biology: Latest Cutting-Edge Discoveries Phantom of the Oxygraph: Artifactual Oxygen Consumption Resulting from the Evolution of Nitrogen or Other Low Solubility Non-Oxygen Gas
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1