Jiawei Ju, Aberham Genetu Feleke, Longxi Luo, Xinan Fan
{"title":"基于脑机混合接口的驾驶员硬、软制动意图识别","authors":"Jiawei Ju, Aberham Genetu Feleke, Longxi Luo, Xinan Fan","doi":"10.34133/2022/9847652","DOIUrl":null,"url":null,"abstract":"In this paper, we propose simultaneous and sequential hybrid brain-computer interfaces (hBCIs) that incorporate electroencephalography (EEG) and electromyography (EMG) signals to classify drivers’ hard braking, soft braking, and normal driving intentions to better assist driving for the first time. The simultaneous hBCIs adopt a feature-level fusion strategy (hBCI-FL) and classifier-level fusion strategies (hBCIs-CL). The sequential hBCIs include the hBCI-SE1, where EEG signals are prioritized to detect hard braking, and hBCI-SE2, where EMG signals are prioritized to detect hard braking. Experimental results show that the proposed hBCI-SE1 with spectral features and the one-vs-rest classification strategy performs best with an average system accuracy of 96.37% among hBCIs. This work is valuable for developing human-centric intelligent assistant driving systems to improve driving safety and driving comfort and promote the application of BCIs.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recognition of Drivers’ Hard and Soft Braking Intentions Based on Hybrid Brain-Computer Interfaces\",\"authors\":\"Jiawei Ju, Aberham Genetu Feleke, Longxi Luo, Xinan Fan\",\"doi\":\"10.34133/2022/9847652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose simultaneous and sequential hybrid brain-computer interfaces (hBCIs) that incorporate electroencephalography (EEG) and electromyography (EMG) signals to classify drivers’ hard braking, soft braking, and normal driving intentions to better assist driving for the first time. The simultaneous hBCIs adopt a feature-level fusion strategy (hBCI-FL) and classifier-level fusion strategies (hBCIs-CL). The sequential hBCIs include the hBCI-SE1, where EEG signals are prioritized to detect hard braking, and hBCI-SE2, where EMG signals are prioritized to detect hard braking. Experimental results show that the proposed hBCI-SE1 with spectral features and the one-vs-rest classification strategy performs best with an average system accuracy of 96.37% among hBCIs. This work is valuable for developing human-centric intelligent assistant driving systems to improve driving safety and driving comfort and promote the application of BCIs.\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9847652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9847652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Recognition of Drivers’ Hard and Soft Braking Intentions Based on Hybrid Brain-Computer Interfaces
In this paper, we propose simultaneous and sequential hybrid brain-computer interfaces (hBCIs) that incorporate electroencephalography (EEG) and electromyography (EMG) signals to classify drivers’ hard braking, soft braking, and normal driving intentions to better assist driving for the first time. The simultaneous hBCIs adopt a feature-level fusion strategy (hBCI-FL) and classifier-level fusion strategies (hBCIs-CL). The sequential hBCIs include the hBCI-SE1, where EEG signals are prioritized to detect hard braking, and hBCI-SE2, where EMG signals are prioritized to detect hard braking. Experimental results show that the proposed hBCI-SE1 with spectral features and the one-vs-rest classification strategy performs best with an average system accuracy of 96.37% among hBCIs. This work is valuable for developing human-centric intelligent assistant driving systems to improve driving safety and driving comfort and promote the application of BCIs.