基于脑机混合接口的驾驶员硬、软制动意图识别

IF 10.5 Q1 ENGINEERING, BIOMEDICAL Cyborg and bionic systems (Washington, D.C.) Pub Date : 2022-07-20 DOI:10.34133/2022/9847652
Jiawei Ju, Aberham Genetu Feleke, Longxi Luo, Xinan Fan
{"title":"基于脑机混合接口的驾驶员硬、软制动意图识别","authors":"Jiawei Ju, Aberham Genetu Feleke, Longxi Luo, Xinan Fan","doi":"10.34133/2022/9847652","DOIUrl":null,"url":null,"abstract":"In this paper, we propose simultaneous and sequential hybrid brain-computer interfaces (hBCIs) that incorporate electroencephalography (EEG) and electromyography (EMG) signals to classify drivers’ hard braking, soft braking, and normal driving intentions to better assist driving for the first time. The simultaneous hBCIs adopt a feature-level fusion strategy (hBCI-FL) and classifier-level fusion strategies (hBCIs-CL). The sequential hBCIs include the hBCI-SE1, where EEG signals are prioritized to detect hard braking, and hBCI-SE2, where EMG signals are prioritized to detect hard braking. Experimental results show that the proposed hBCI-SE1 with spectral features and the one-vs-rest classification strategy performs best with an average system accuracy of 96.37% among hBCIs. This work is valuable for developing human-centric intelligent assistant driving systems to improve driving safety and driving comfort and promote the application of BCIs.","PeriodicalId":72764,"journal":{"name":"Cyborg and bionic systems (Washington, D.C.)","volume":" ","pages":""},"PeriodicalIF":10.5000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Recognition of Drivers’ Hard and Soft Braking Intentions Based on Hybrid Brain-Computer Interfaces\",\"authors\":\"Jiawei Ju, Aberham Genetu Feleke, Longxi Luo, Xinan Fan\",\"doi\":\"10.34133/2022/9847652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose simultaneous and sequential hybrid brain-computer interfaces (hBCIs) that incorporate electroencephalography (EEG) and electromyography (EMG) signals to classify drivers’ hard braking, soft braking, and normal driving intentions to better assist driving for the first time. The simultaneous hBCIs adopt a feature-level fusion strategy (hBCI-FL) and classifier-level fusion strategies (hBCIs-CL). The sequential hBCIs include the hBCI-SE1, where EEG signals are prioritized to detect hard braking, and hBCI-SE2, where EMG signals are prioritized to detect hard braking. Experimental results show that the proposed hBCI-SE1 with spectral features and the one-vs-rest classification strategy performs best with an average system accuracy of 96.37% among hBCIs. This work is valuable for developing human-centric intelligent assistant driving systems to improve driving safety and driving comfort and promote the application of BCIs.\",\"PeriodicalId\":72764,\"journal\":{\"name\":\"Cyborg and bionic systems (Washington, D.C.)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.5000,\"publicationDate\":\"2022-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cyborg and bionic systems (Washington, D.C.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34133/2022/9847652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cyborg and bionic systems (Washington, D.C.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34133/2022/9847652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 12

摘要

在本文中,我们提出了同步和顺序混合脑机接口(hBCIs),结合脑电图(EEG)和肌电图(EMG)信号来分类驾驶员的硬制动,软制动和正常驾驶意图,以更好地辅助驾驶。同时hbci采用特征级融合策略(hBCI-FL)和分类器级融合策略(hbci - cl)。顺序hbci包括hBCI-SE1,其中脑电图信号优先检测硬制动,以及hBCI-SE2,其中肌电信号优先检测硬制动。实验结果表明,结合光谱特征和1 -vs-rest分类策略的hBCI-SE1在hbci中表现最好,平均系统准确率为96.37%。该工作对于开发以人为中心的智能辅助驾驶系统,提高驾驶安全性和舒适性,促进脑机接口的应用具有重要价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recognition of Drivers’ Hard and Soft Braking Intentions Based on Hybrid Brain-Computer Interfaces
In this paper, we propose simultaneous and sequential hybrid brain-computer interfaces (hBCIs) that incorporate electroencephalography (EEG) and electromyography (EMG) signals to classify drivers’ hard braking, soft braking, and normal driving intentions to better assist driving for the first time. The simultaneous hBCIs adopt a feature-level fusion strategy (hBCI-FL) and classifier-level fusion strategies (hBCIs-CL). The sequential hBCIs include the hBCI-SE1, where EEG signals are prioritized to detect hard braking, and hBCI-SE2, where EMG signals are prioritized to detect hard braking. Experimental results show that the proposed hBCI-SE1 with spectral features and the one-vs-rest classification strategy performs best with an average system accuracy of 96.37% among hBCIs. This work is valuable for developing human-centric intelligent assistant driving systems to improve driving safety and driving comfort and promote the application of BCIs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.70
自引率
0.00%
发文量
0
审稿时长
21 weeks
期刊最新文献
Multi-Section Magnetic Soft Robot with Multirobot Navigation System for Vasculature Intervention. Advances in Biointegrated Wearable and Implantable Optoelectronic Devices for Cardiac Healthcare. Sensors and Devices Guided by Artificial Intelligence for Personalized Pain Medicine. Modeling Grid Cell Distortions with a Grid Cell Calibration Mechanism. Federated Abnormal Heart Sound Detection with Weak to No Labels.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1