{"title":"二子对偶不变场方程的八元形式","authors":"M. E. Kansu, M. Tanişli, S. Demir","doi":"10.3906/fiz-1910-7","DOIUrl":null,"url":null,"abstract":"The hypothetical particles dyons, which carry both electric and magnetic charges simultaneously, are widely discussed in application to electromagnetic theory and magnetohydrodynamics. Particularly, the duality-invariant field equations were suggested with suitable definitions of the dyon's electromagnetic characteristics. In this study, we propose an alternative formulation of the duality-invariant field equations for dyons based on octonion algebra. Octonions have been used to express the equations for potentials, field strengths, and sources in a more compact and consistent manner. Additionally, the octonionic form of the energy conservation law for dyons has been derived.","PeriodicalId":46003,"journal":{"name":"Turkish Journal of Physics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Octonion form of duality-invariant field equations for dyons\",\"authors\":\"M. E. Kansu, M. Tanişli, S. Demir\",\"doi\":\"10.3906/fiz-1910-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hypothetical particles dyons, which carry both electric and magnetic charges simultaneously, are widely discussed in application to electromagnetic theory and magnetohydrodynamics. Particularly, the duality-invariant field equations were suggested with suitable definitions of the dyon's electromagnetic characteristics. In this study, we propose an alternative formulation of the duality-invariant field equations for dyons based on octonion algebra. Octonions have been used to express the equations for potentials, field strengths, and sources in a more compact and consistent manner. Additionally, the octonionic form of the energy conservation law for dyons has been derived.\",\"PeriodicalId\":46003,\"journal\":{\"name\":\"Turkish Journal of Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Turkish Journal of Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3906/fiz-1910-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/fiz-1910-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Octonion form of duality-invariant field equations for dyons
The hypothetical particles dyons, which carry both electric and magnetic charges simultaneously, are widely discussed in application to electromagnetic theory and magnetohydrodynamics. Particularly, the duality-invariant field equations were suggested with suitable definitions of the dyon's electromagnetic characteristics. In this study, we propose an alternative formulation of the duality-invariant field equations for dyons based on octonion algebra. Octonions have been used to express the equations for potentials, field strengths, and sources in a more compact and consistent manner. Additionally, the octonionic form of the energy conservation law for dyons has been derived.
期刊介绍:
The Turkish Journal of Physics is published electronically 6 times a year by the Scientific and Technological Research Council of Turkey (TÜBİTAK) and accepts English-language manuscripts in various fields of research in physics, astrophysics, and interdisciplinary topics related to physics. Contribution is open to researchers of all nationalities.