澳大利亚半干旱草地土壤微生物对降水变化的差异响应

IF 2 3区 农林科学 Q3 ECOLOGY Pedobiologia Pub Date : 2023-06-01 DOI:10.1016/j.pedobi.2023.150873
Santiago Toledo , Veronica Gargaglione , Laura Yahdjian , Pablo L. Peri
{"title":"澳大利亚半干旱草地土壤微生物对降水变化的差异响应","authors":"Santiago Toledo ,&nbsp;Veronica Gargaglione ,&nbsp;Laura Yahdjian ,&nbsp;Pablo L. Peri","doi":"10.1016/j.pedobi.2023.150873","DOIUrl":null,"url":null,"abstract":"<div><p>Global climate models predict that precipitation regimes will change, generating great impacts on various ecosystem processes and functions. Therefore, it is important to know how drought and precipitation increases would affect the soil microorganims and plants. We established a precipitation manipulation experiment, with treatments ranging from 54% reduction (drought) to 54% increases (irrigation) in a semiarid ecosystem, and measured microbial carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), microbial metabolic coefficients (qCO<sub>2</sub>), and estimated the sequestration and fluxes of CO<sub>2</sub> by soil microorganisms. While simulated drought did not modify the microbial community attributes, the microbial biomass increased with greater precipitation, which in the long term could lead to greater carbon (C) sequestration by the microbial pathway and a decline in potential CO<sub>2</sub> emissions into the atmosphere. This study shows that microorganisms of the semiarid soil are able to withstand drought and are possibly able to adopt resistance mechanisms under dry conditions. However, drought or increased precipitation did not affect SBR. The results showed that plants’ and soil microorganisms’ responses to precipitation change were asymmetric and different. The study quantifies the contributions of microorganisms to sequestered C by soil microbial biomass (≈35 g MBC m<sup>−2</sup>) and CO<sub>2</sub> fluxes to the atmosphere (removed in MBC ≈127 g CO<sub>2</sub> m<sup>−2</sup> and emission by SBR ≈876 g CO<sub>2</sub> m<sup>−2</sup> yr<sup>−1</sup>) in semiarid ecosystems. This study not only increases our understanding of the adaptation of soil microorganisms to precipitation changes but also provides new insight into the contributions of the microorganisms when modeling and projecting implications for C cycling.</p></div>","PeriodicalId":49711,"journal":{"name":"Pedobiologia","volume":"97 ","pages":"Article 150873"},"PeriodicalIF":2.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential responses of soil microorganisms to precipitation changes in austral semiarid grasslands\",\"authors\":\"Santiago Toledo ,&nbsp;Veronica Gargaglione ,&nbsp;Laura Yahdjian ,&nbsp;Pablo L. Peri\",\"doi\":\"10.1016/j.pedobi.2023.150873\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Global climate models predict that precipitation regimes will change, generating great impacts on various ecosystem processes and functions. Therefore, it is important to know how drought and precipitation increases would affect the soil microorganims and plants. We established a precipitation manipulation experiment, with treatments ranging from 54% reduction (drought) to 54% increases (irrigation) in a semiarid ecosystem, and measured microbial carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), microbial metabolic coefficients (qCO<sub>2</sub>), and estimated the sequestration and fluxes of CO<sub>2</sub> by soil microorganisms. While simulated drought did not modify the microbial community attributes, the microbial biomass increased with greater precipitation, which in the long term could lead to greater carbon (C) sequestration by the microbial pathway and a decline in potential CO<sub>2</sub> emissions into the atmosphere. This study shows that microorganisms of the semiarid soil are able to withstand drought and are possibly able to adopt resistance mechanisms under dry conditions. However, drought or increased precipitation did not affect SBR. The results showed that plants’ and soil microorganisms’ responses to precipitation change were asymmetric and different. The study quantifies the contributions of microorganisms to sequestered C by soil microbial biomass (≈35 g MBC m<sup>−2</sup>) and CO<sub>2</sub> fluxes to the atmosphere (removed in MBC ≈127 g CO<sub>2</sub> m<sup>−2</sup> and emission by SBR ≈876 g CO<sub>2</sub> m<sup>−2</sup> yr<sup>−1</sup>) in semiarid ecosystems. This study not only increases our understanding of the adaptation of soil microorganisms to precipitation changes but also provides new insight into the contributions of the microorganisms when modeling and projecting implications for C cycling.</p></div>\",\"PeriodicalId\":49711,\"journal\":{\"name\":\"Pedobiologia\",\"volume\":\"97 \",\"pages\":\"Article 150873\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedobiologia\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031405623000112\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedobiologia","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031405623000112","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全球气候模式预测降水状况将发生变化,对各种生态系统过程和功能产生重大影响。因此,了解干旱和降水增加对土壤微生物和植物的影响是非常重要的。在半干旱生态系统中建立了减少54%(干旱)到增加54%(灌溉)的降水调控试验,测定了土壤微生物碳(MBC)和氮(MBN)、土壤基础呼吸(SBR)、微生物代谢系数(qCO2),并估算了土壤微生物对CO2的封存和通量。虽然模拟干旱没有改变微生物群落属性,但随着降水的增加,微生物生物量增加,从长远来看,这可能导致微生物途径的碳(C)固存增加,并减少潜在的二氧化碳排放到大气中。本研究表明,半干旱土壤微生物具有抗旱能力,在干旱条件下可能具有抗旱机制。然而,干旱或降水增加对SBR没有影响。结果表明,植物和土壤微生物对降水变化的响应不对称且存在差异。该研究量化了半干旱生态系统中微生物对土壤微生物生物量(≈35 g MBC m−2)和大气CO2通量(MBC去除≈127 g CO2 m−2,SBR排放≈876 g CO2 m−2 yr−1)的贡献。这项研究不仅增加了我们对土壤微生物对降水变化的适应的理解,而且为微生物在模拟和预测碳循环的影响时的贡献提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Differential responses of soil microorganisms to precipitation changes in austral semiarid grasslands

Global climate models predict that precipitation regimes will change, generating great impacts on various ecosystem processes and functions. Therefore, it is important to know how drought and precipitation increases would affect the soil microorganims and plants. We established a precipitation manipulation experiment, with treatments ranging from 54% reduction (drought) to 54% increases (irrigation) in a semiarid ecosystem, and measured microbial carbon (MBC) and nitrogen (MBN), soil basal respiration (SBR), microbial metabolic coefficients (qCO2), and estimated the sequestration and fluxes of CO2 by soil microorganisms. While simulated drought did not modify the microbial community attributes, the microbial biomass increased with greater precipitation, which in the long term could lead to greater carbon (C) sequestration by the microbial pathway and a decline in potential CO2 emissions into the atmosphere. This study shows that microorganisms of the semiarid soil are able to withstand drought and are possibly able to adopt resistance mechanisms under dry conditions. However, drought or increased precipitation did not affect SBR. The results showed that plants’ and soil microorganisms’ responses to precipitation change were asymmetric and different. The study quantifies the contributions of microorganisms to sequestered C by soil microbial biomass (≈35 g MBC m−2) and CO2 fluxes to the atmosphere (removed in MBC ≈127 g CO2 m−2 and emission by SBR ≈876 g CO2 m−2 yr−1) in semiarid ecosystems. This study not only increases our understanding of the adaptation of soil microorganisms to precipitation changes but also provides new insight into the contributions of the microorganisms when modeling and projecting implications for C cycling.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pedobiologia
Pedobiologia 环境科学-生态学
CiteScore
4.20
自引率
8.70%
发文量
38
审稿时长
64 days
期刊介绍: Pedobiologia publishes peer reviewed articles describing original work in the field of soil ecology, which includes the study of soil organisms and their interactions with factors in their biotic and abiotic environments. Analysis of biological structures, interactions, functions, and processes in soil is fundamental for understanding the dynamical nature of terrestrial ecosystems, a prerequisite for appropriate soil management. The scope of this journal consists of fundamental and applied aspects of soil ecology; key focal points include interactions among organisms in soil, organismal controls on soil processes, causes and consequences of soil biodiversity, and aboveground-belowground interactions. We publish: original research that tests clearly defined hypotheses addressing topics of current interest in soil ecology (including studies demonstrating nonsignificant effects); descriptions of novel methodological approaches, or evaluations of current approaches, that address a clear need in soil ecology research; innovative syntheses of the soil ecology literature, including metaanalyses, topical in depth reviews and short opinion/perspective pieces, and descriptions of original conceptual frameworks; and short notes reporting novel observations of ecological significance.
期刊最新文献
Editorial Board Organic matter content rather than farming practices modulates microbial activities in vineyard soils Food choice and pharyngeal pumping activity of bacterial-feeding nematodes are driven by different functional traits A field mesocosm method for manipulation of soil mesofauna communities and repeated measurement of their ecological functions over months to years Responses of N2O production and associated functional genes to increasing temperature and moisture in surface and subsurface soils of a temperate forest
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1