制定适合自动执行的生产过程的正式规范

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2021-01-01 DOI:10.1515/comp-2020-0200
Marko Vještica, Vladimir Dimitrieski, M. Pisarić, Slavica Kordić, S. Ristić, I. Luković
{"title":"制定适合自动执行的生产过程的正式规范","authors":"Marko Vještica, Vladimir Dimitrieski, M. Pisarić, Slavica Kordić, S. Ristić, I. Luković","doi":"10.1515/comp-2020-0200","DOIUrl":null,"url":null,"abstract":"Abstract Technological advances and increasing customer need for highly customized products have triggered a fourth industrial revolution. A digital revolution in the manufacturing industry is enforced by introducing smart devices and knowledge bases to form intelligent manufacturing information systems. One of the goals of the digital revolution is to allow flexibility of smart factories by automating shop floor changes based on the changes in input production processes and ordered products. In order to make this possible, a formal language to describe production processes is needed, together with a code generator for its models and an engine to execute the code on smart devices. Existing process modeling languages are not usually tailored to model production processes, especially if models are needed for automatic code generation. In this paper we propose a research on Industry 4.0 manufacturing using a Domain-Specific Modeling Language (DSML) within a Model-Driven Software Development (MDSD) approach to model production processes. The models would be used to generate instructions to smart devices and human workers, and gather a feedback from them during the process execution. A pilot comparative analysis of three modeling languages that are commonly used for process modeling is given with the goal of identifying supported modeling concepts, good practices and usage patterns.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/comp-2020-0200","citationCount":"9","resultStr":"{\"title\":\"Towards a Formal Specification of Production Processes Suitable for Automatic Execution\",\"authors\":\"Marko Vještica, Vladimir Dimitrieski, M. Pisarić, Slavica Kordić, S. Ristić, I. Luković\",\"doi\":\"10.1515/comp-2020-0200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Technological advances and increasing customer need for highly customized products have triggered a fourth industrial revolution. A digital revolution in the manufacturing industry is enforced by introducing smart devices and knowledge bases to form intelligent manufacturing information systems. One of the goals of the digital revolution is to allow flexibility of smart factories by automating shop floor changes based on the changes in input production processes and ordered products. In order to make this possible, a formal language to describe production processes is needed, together with a code generator for its models and an engine to execute the code on smart devices. Existing process modeling languages are not usually tailored to model production processes, especially if models are needed for automatic code generation. In this paper we propose a research on Industry 4.0 manufacturing using a Domain-Specific Modeling Language (DSML) within a Model-Driven Software Development (MDSD) approach to model production processes. The models would be used to generate instructions to smart devices and human workers, and gather a feedback from them during the process execution. A pilot comparative analysis of three modeling languages that are commonly used for process modeling is given with the goal of identifying supported modeling concepts, good practices and usage patterns.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/comp-2020-0200\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/comp-2020-0200\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/comp-2020-0200","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 9

摘要

技术进步和客户对高度定制产品需求的增加引发了第四次工业革命。通过引入智能设备和知识库,形成智能制造信息系统,推动制造业数字化革命。数字革命的目标之一是,根据输入生产流程和订购产品的变化,通过自动化车间变化,实现智能工厂的灵活性。为了实现这一点,需要一种描述生产过程的正式语言,以及用于其模型的代码生成器和在智能设备上执行代码的引擎。现有的过程建模语言通常不适合对生产过程进行建模,特别是在自动代码生成需要模型的情况下。在本文中,我们建议在模型驱动软件开发(MDSD)方法中使用特定领域建模语言(DSML)对工业4.0制造进行研究,以对生产过程进行建模。这些模型将用于为智能设备和人工生成指令,并在流程执行期间从他们那里收集反馈。本文对流程建模常用的三种建模语言进行了初步比较分析,目的是确定受支持的建模概念、良好实践和使用模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards a Formal Specification of Production Processes Suitable for Automatic Execution
Abstract Technological advances and increasing customer need for highly customized products have triggered a fourth industrial revolution. A digital revolution in the manufacturing industry is enforced by introducing smart devices and knowledge bases to form intelligent manufacturing information systems. One of the goals of the digital revolution is to allow flexibility of smart factories by automating shop floor changes based on the changes in input production processes and ordered products. In order to make this possible, a formal language to describe production processes is needed, together with a code generator for its models and an engine to execute the code on smart devices. Existing process modeling languages are not usually tailored to model production processes, especially if models are needed for automatic code generation. In this paper we propose a research on Industry 4.0 manufacturing using a Domain-Specific Modeling Language (DSML) within a Model-Driven Software Development (MDSD) approach to model production processes. The models would be used to generate instructions to smart devices and human workers, and gather a feedback from them during the process execution. A pilot comparative analysis of three modeling languages that are commonly used for process modeling is given with the goal of identifying supported modeling concepts, good practices and usage patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1