{"title":"不确定图的贴近度中心性","authors":"Zhenfang Liu, Jianxiong Ye, Zhaonian Zou","doi":"10.1145/3604912","DOIUrl":null,"url":null,"abstract":"Centrality is a family of metrics for characterizing the importance of a vertex in a graph. Although a large number of centrality metrics have been proposed, a majority of them ignores uncertainty in graph data. In this paper, we formulate closeness centrality on uncertain graphs and define the batch closeness centrality evaluation problem that computes the closeness centrality of a subset of vertices in an uncertain graph. We develop three algorithms, MS-BCC, MG-BCC and MGMS-BCC, based on sampling to approximate the closeness centrality of the specified vertices. All these algorithms require to perform breadth-first searches (BFS) starting from the specified vertices on a large number of sampled possible worlds of the uncertain graph. To improve the efficiency of the algorithms, we exploit operation-level parallelism of the BFS traversals and simultaneously execute the shared sequences of operations in the breadth-first searches. Parallelization is realized at different levels in these algorithms. The experimental results show that the proposed algorithms can efficiently and accurately approximate the closeness centrality of the given vertices. MGMS-BCC is faster than both MS-BCC and MG-BCC because it avoids more repeated executions of the shared operation sequences in the BFS traversals.","PeriodicalId":50940,"journal":{"name":"ACM Transactions on the Web","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closeness Centrality on Uncertain Graphs\",\"authors\":\"Zhenfang Liu, Jianxiong Ye, Zhaonian Zou\",\"doi\":\"10.1145/3604912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Centrality is a family of metrics for characterizing the importance of a vertex in a graph. Although a large number of centrality metrics have been proposed, a majority of them ignores uncertainty in graph data. In this paper, we formulate closeness centrality on uncertain graphs and define the batch closeness centrality evaluation problem that computes the closeness centrality of a subset of vertices in an uncertain graph. We develop three algorithms, MS-BCC, MG-BCC and MGMS-BCC, based on sampling to approximate the closeness centrality of the specified vertices. All these algorithms require to perform breadth-first searches (BFS) starting from the specified vertices on a large number of sampled possible worlds of the uncertain graph. To improve the efficiency of the algorithms, we exploit operation-level parallelism of the BFS traversals and simultaneously execute the shared sequences of operations in the breadth-first searches. Parallelization is realized at different levels in these algorithms. The experimental results show that the proposed algorithms can efficiently and accurately approximate the closeness centrality of the given vertices. MGMS-BCC is faster than both MS-BCC and MG-BCC because it avoids more repeated executions of the shared operation sequences in the BFS traversals.\",\"PeriodicalId\":50940,\"journal\":{\"name\":\"ACM Transactions on the Web\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on the Web\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3604912\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on the Web","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3604912","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Centrality is a family of metrics for characterizing the importance of a vertex in a graph. Although a large number of centrality metrics have been proposed, a majority of them ignores uncertainty in graph data. In this paper, we formulate closeness centrality on uncertain graphs and define the batch closeness centrality evaluation problem that computes the closeness centrality of a subset of vertices in an uncertain graph. We develop three algorithms, MS-BCC, MG-BCC and MGMS-BCC, based on sampling to approximate the closeness centrality of the specified vertices. All these algorithms require to perform breadth-first searches (BFS) starting from the specified vertices on a large number of sampled possible worlds of the uncertain graph. To improve the efficiency of the algorithms, we exploit operation-level parallelism of the BFS traversals and simultaneously execute the shared sequences of operations in the breadth-first searches. Parallelization is realized at different levels in these algorithms. The experimental results show that the proposed algorithms can efficiently and accurately approximate the closeness centrality of the given vertices. MGMS-BCC is faster than both MS-BCC and MG-BCC because it avoids more repeated executions of the shared operation sequences in the BFS traversals.
期刊介绍:
Transactions on the Web (TWEB) is a journal publishing refereed articles reporting the results of research on Web content, applications, use, and related enabling technologies. Topics in the scope of TWEB include but are not limited to the following: Browsers and Web Interfaces; Electronic Commerce; Electronic Publishing; Hypertext and Hypermedia; Semantic Web; Web Engineering; Web Services; and Service-Oriented Computing XML.
In addition, papers addressing the intersection of the following broader technologies with the Web are also in scope: Accessibility; Business Services Education; Knowledge Management and Representation; Mobility and pervasive computing; Performance and scalability; Recommender systems; Searching, Indexing, Classification, Retrieval and Querying, Data Mining and Analysis; Security and Privacy; and User Interfaces.
Papers discussing specific Web technologies, applications, content generation and management and use are within scope. Also, papers describing novel applications of the web as well as papers on the underlying technologies are welcome.