{"title":"超临界二氧化碳萃取棕榈脂肪酸馏出物中生育三烯醇的助溶剂选择","authors":"N. Othman","doi":"10.21894/jopr.2022.0071","DOIUrl":null,"url":null,"abstract":"A predictive model was devised for the estimation of the Kamlet-Taft (KT) dipolarity/polarisability (π*) parameter for binary mixtures of supercritical carbon dioxide (scCO 2 ) and co-solvent. The model allows the selection of the best co-solvent for the extraction of tocotrienols from palm fatty acid distillate (PFAD). Ethanol, acetone, and isopropanol were separately used as co-solvents in the range of 0.05 - 0.15 mL/g for the experimental set-up at 20 MPa and 53°C for 300 min and a CO 2 flow rate of 32 ± 5 g/min. The model’s estimations of π* for all these binary mixtures followed the trends for the extraction of tocotrienols. The π* values increased with the concentration of co-solvent in the binary system and tocotrienol extraction was directly proportional to the π* value, but only up to a particular value. Of the three co-solvents tested, ethanol was predicted to be the best to enhance tocotrienol extraction. With a 0.075 mL/g of ethanol, the extraction yield was 30.03 a ± 0.03 mg/g, more than that achieved with pure scCO 2 (16.45 b ± 2.02 mg/g).","PeriodicalId":16613,"journal":{"name":"Journal of Oil Palm Research","volume":" ","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CO-SOLVENT SELECTION FOR TOCOTRIENOL EXTRACTION FROM PALM FATTY ACID DISTILLATE USING SUPERCRITICAL CARBON DIOXIDE\",\"authors\":\"N. Othman\",\"doi\":\"10.21894/jopr.2022.0071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A predictive model was devised for the estimation of the Kamlet-Taft (KT) dipolarity/polarisability (π*) parameter for binary mixtures of supercritical carbon dioxide (scCO 2 ) and co-solvent. The model allows the selection of the best co-solvent for the extraction of tocotrienols from palm fatty acid distillate (PFAD). Ethanol, acetone, and isopropanol were separately used as co-solvents in the range of 0.05 - 0.15 mL/g for the experimental set-up at 20 MPa and 53°C for 300 min and a CO 2 flow rate of 32 ± 5 g/min. The model’s estimations of π* for all these binary mixtures followed the trends for the extraction of tocotrienols. The π* values increased with the concentration of co-solvent in the binary system and tocotrienol extraction was directly proportional to the π* value, but only up to a particular value. Of the three co-solvents tested, ethanol was predicted to be the best to enhance tocotrienol extraction. With a 0.075 mL/g of ethanol, the extraction yield was 30.03 a ± 0.03 mg/g, more than that achieved with pure scCO 2 (16.45 b ± 2.02 mg/g).\",\"PeriodicalId\":16613,\"journal\":{\"name\":\"Journal of Oil Palm Research\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Oil Palm Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.21894/jopr.2022.0071\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oil Palm Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.21894/jopr.2022.0071","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
CO-SOLVENT SELECTION FOR TOCOTRIENOL EXTRACTION FROM PALM FATTY ACID DISTILLATE USING SUPERCRITICAL CARBON DIOXIDE
A predictive model was devised for the estimation of the Kamlet-Taft (KT) dipolarity/polarisability (π*) parameter for binary mixtures of supercritical carbon dioxide (scCO 2 ) and co-solvent. The model allows the selection of the best co-solvent for the extraction of tocotrienols from palm fatty acid distillate (PFAD). Ethanol, acetone, and isopropanol were separately used as co-solvents in the range of 0.05 - 0.15 mL/g for the experimental set-up at 20 MPa and 53°C for 300 min and a CO 2 flow rate of 32 ± 5 g/min. The model’s estimations of π* for all these binary mixtures followed the trends for the extraction of tocotrienols. The π* values increased with the concentration of co-solvent in the binary system and tocotrienol extraction was directly proportional to the π* value, but only up to a particular value. Of the three co-solvents tested, ethanol was predicted to be the best to enhance tocotrienol extraction. With a 0.075 mL/g of ethanol, the extraction yield was 30.03 a ± 0.03 mg/g, more than that achieved with pure scCO 2 (16.45 b ± 2.02 mg/g).
期刊介绍:
JOURNAL OF OIL PALM RESEARCH, an international refereed journal, carries full-length original research papers and scientific review papers on various aspects of oil palm and palm oil and other palms. It also publishes short communications, letters to editor and reviews of relevant books. JOURNAL OF OIL PALM RESEARCH is published four times per year, i.e. March, June, September and December.