{"title":"燃气管道阀门关闭检测的状态估计问题","authors":"Italo M. Madeira, M. A. R. Lucumi, H. Orlande","doi":"10.1080/17415977.2021.1910682","DOIUrl":null,"url":null,"abstract":"The undesired and unexpected closure of valves in pipelines is the most frequent failure that causes interruptions in the transport of natural gas. This work aims at the detection of valve closures by solving a state estimation problem with the Particle Filter method. The gas flow problem in the duct is solved with a Weighted Average Flux – Total Variation Diminishing scheme, while state variables are estimated with simulated measurements of pressure, velocity and temperature at different points along the pipeline. Two versions of the particle filter method are implemented in this work for the solution of the state estimation problem, namely, the Sampling Importance Resampling (SIR) and the Auxiliary Sampling Importance Resampling (ASIR) algorithms. Accurate estimations were obtained with both algorithms for configurations involving pipelines with one or three valves. On the other hand, the SIR algorithm required a larger number of particles than the ASIR algorithm for the same solution accuracy.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"2186 - 2206"},"PeriodicalIF":1.1000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2021.1910682","citationCount":"1","resultStr":"{\"title\":\"State estimation problem for the detection of valve closure in gas pipelines\",\"authors\":\"Italo M. Madeira, M. A. R. Lucumi, H. Orlande\",\"doi\":\"10.1080/17415977.2021.1910682\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The undesired and unexpected closure of valves in pipelines is the most frequent failure that causes interruptions in the transport of natural gas. This work aims at the detection of valve closures by solving a state estimation problem with the Particle Filter method. The gas flow problem in the duct is solved with a Weighted Average Flux – Total Variation Diminishing scheme, while state variables are estimated with simulated measurements of pressure, velocity and temperature at different points along the pipeline. Two versions of the particle filter method are implemented in this work for the solution of the state estimation problem, namely, the Sampling Importance Resampling (SIR) and the Auxiliary Sampling Importance Resampling (ASIR) algorithms. Accurate estimations were obtained with both algorithms for configurations involving pipelines with one or three valves. On the other hand, the SIR algorithm required a larger number of particles than the ASIR algorithm for the same solution accuracy.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"2186 - 2206\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2021.1910682\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2021.1910682\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2021.1910682","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
State estimation problem for the detection of valve closure in gas pipelines
The undesired and unexpected closure of valves in pipelines is the most frequent failure that causes interruptions in the transport of natural gas. This work aims at the detection of valve closures by solving a state estimation problem with the Particle Filter method. The gas flow problem in the duct is solved with a Weighted Average Flux – Total Variation Diminishing scheme, while state variables are estimated with simulated measurements of pressure, velocity and temperature at different points along the pipeline. Two versions of the particle filter method are implemented in this work for the solution of the state estimation problem, namely, the Sampling Importance Resampling (SIR) and the Auxiliary Sampling Importance Resampling (ASIR) algorithms. Accurate estimations were obtained with both algorithms for configurations involving pipelines with one or three valves. On the other hand, the SIR algorithm required a larger number of particles than the ASIR algorithm for the same solution accuracy.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.