{"title":"不间断IMS:虚拟IP多媒体子系统故障时用户接入维护","authors":"M. T. Raza, Songwu Lu","doi":"10.1109/JSAC.2020.2999686","DOIUrl":null,"url":null,"abstract":"Network function virtualization (NFV) of IP Multimedia Subsystem (IMS) pose promise to service increasing multimedia traffic demand. In this paper, we show that virtualized IMS (vIMS) is unable to provide session-level resilience under faults and becomes the bottleneck to high service availability. We propose a design to provide fault-tolerance for vIMS operations. In control-plane, our system decomposes single IMS operation into different atomic actions, and partition these actions into critical and non-critical actions. Only the critical actions are then monitored in real time and the system can easily resume IMS operations after failure. In data-plane, we decompose multimedia traffic flows and partition each multimedia service as a separate Virtualized Network Function (VNF). Through data-plane partitioning, our design restricts the damage from faults to only failed VNF. Thereafter, impacted service flow is merged with other ongoing service flows. We build our system prototype of open source IMS over virtualized platform. Our results show that we can achieve session-level resilience by performing fail-over procedure within tens of milliseconds under different combinations of IMS failures in both control-plane and data-plane operations.","PeriodicalId":13243,"journal":{"name":"IEEE Journal on Selected Areas in Communications","volume":"38 1","pages":"1464-1477"},"PeriodicalIF":13.8000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999686","citationCount":"0","resultStr":"{\"title\":\"Uninterruptible IMS: Maintaining Users Access During Faults in Virtualized IP Multimedia Subsystem\",\"authors\":\"M. T. Raza, Songwu Lu\",\"doi\":\"10.1109/JSAC.2020.2999686\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Network function virtualization (NFV) of IP Multimedia Subsystem (IMS) pose promise to service increasing multimedia traffic demand. In this paper, we show that virtualized IMS (vIMS) is unable to provide session-level resilience under faults and becomes the bottleneck to high service availability. We propose a design to provide fault-tolerance for vIMS operations. In control-plane, our system decomposes single IMS operation into different atomic actions, and partition these actions into critical and non-critical actions. Only the critical actions are then monitored in real time and the system can easily resume IMS operations after failure. In data-plane, we decompose multimedia traffic flows and partition each multimedia service as a separate Virtualized Network Function (VNF). Through data-plane partitioning, our design restricts the damage from faults to only failed VNF. Thereafter, impacted service flow is merged with other ongoing service flows. We build our system prototype of open source IMS over virtualized platform. Our results show that we can achieve session-level resilience by performing fail-over procedure within tens of milliseconds under different combinations of IMS failures in both control-plane and data-plane operations.\",\"PeriodicalId\":13243,\"journal\":{\"name\":\"IEEE Journal on Selected Areas in Communications\",\"volume\":\"38 1\",\"pages\":\"1464-1477\"},\"PeriodicalIF\":13.8000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/JSAC.2020.2999686\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Selected Areas in Communications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1109/JSAC.2020.2999686\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Selected Areas in Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/JSAC.2020.2999686","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Uninterruptible IMS: Maintaining Users Access During Faults in Virtualized IP Multimedia Subsystem
Network function virtualization (NFV) of IP Multimedia Subsystem (IMS) pose promise to service increasing multimedia traffic demand. In this paper, we show that virtualized IMS (vIMS) is unable to provide session-level resilience under faults and becomes the bottleneck to high service availability. We propose a design to provide fault-tolerance for vIMS operations. In control-plane, our system decomposes single IMS operation into different atomic actions, and partition these actions into critical and non-critical actions. Only the critical actions are then monitored in real time and the system can easily resume IMS operations after failure. In data-plane, we decompose multimedia traffic flows and partition each multimedia service as a separate Virtualized Network Function (VNF). Through data-plane partitioning, our design restricts the damage from faults to only failed VNF. Thereafter, impacted service flow is merged with other ongoing service flows. We build our system prototype of open source IMS over virtualized platform. Our results show that we can achieve session-level resilience by performing fail-over procedure within tens of milliseconds under different combinations of IMS failures in both control-plane and data-plane operations.
期刊介绍:
The IEEE Journal on Selected Areas in Communications (JSAC) is a prestigious journal that covers various topics related to Computer Networks and Communications (Q1) as well as Electrical and Electronic Engineering (Q1). Each issue of JSAC is dedicated to a specific technical topic, providing readers with an up-to-date collection of papers in that area. The journal is highly regarded within the research community and serves as a valuable reference.
The topics covered by JSAC issues span the entire field of communications and networking, with recent issue themes including Network Coding for Wireless Communication Networks, Wireless and Pervasive Communications for Healthcare, Network Infrastructure Configuration, Broadband Access Networks: Architectures and Protocols, Body Area Networking: Technology and Applications, Underwater Wireless Communication Networks, Game Theory in Communication Systems, and Exploiting Limited Feedback in Tomorrow’s Communication Networks.