用于雾计算的SPIHT编码医学图像增强压缩方法

IF 0.8 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING International Journal of Image and Graphics Pub Date : 2023-08-28 DOI:10.1142/s0219467825500251
Shabana Rai, Arif Ullah, Wong Lai Kuan, Rifat Mustafa
{"title":"用于雾计算的SPIHT编码医学图像增强压缩方法","authors":"Shabana Rai, Arif Ullah, Wong Lai Kuan, Rifat Mustafa","doi":"10.1142/s0219467825500251","DOIUrl":null,"url":null,"abstract":"When it comes to filtering and compressing data before sending it to a cloud server, fog computing is a rummage sale. Fog computing enables an alternate method to reduce the complexity of medical image processing and steadily improve its dependability. Medical images are produced by imaging processing modalities using X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI) scans, and ultrasound (US). These medical images are large and have a huge amount of storage. This problem is being solved by making use of compression. In this area, lots of work is done. However, before adding more techniques to Fog, getting a high compression ratio (CR) in a shorter time is required, therefore consuming less network traffic. Le Gall5/3 integer wavelet transform (IWT) and a set partitioning in hierarchical trees (SPIHT) encoder were used in this study’s implementation of an image compression technique. MRI is used in the experiments. The suggested technique uses a modified CR and less compression time (CT) to compress the medical image. The proposed approach results in an average CR of 84.8895%. A 40.92% peak signal-to-noise ratio (PSNR) PNSR value is present. Using the Huffman coding, the proposed approach reduces the CT by 36.7434 s compared to the IWT. Regarding CR, the suggested technique outperforms IWTs with Huffman coding by 12%. The current approach has a 72.36% CR. The suggested work’s shortcoming is that the high CR caused a decline in the quality of the medical images. PSNR values can be raised, and more effort can be made to compress colored medical images and 3-dimensional medical images.","PeriodicalId":44688,"journal":{"name":"International Journal of Image and Graphics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Enhanced Compression Method for Medical Images Using SPIHT Encoder for Fog Computing\",\"authors\":\"Shabana Rai, Arif Ullah, Wong Lai Kuan, Rifat Mustafa\",\"doi\":\"10.1142/s0219467825500251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When it comes to filtering and compressing data before sending it to a cloud server, fog computing is a rummage sale. Fog computing enables an alternate method to reduce the complexity of medical image processing and steadily improve its dependability. Medical images are produced by imaging processing modalities using X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI) scans, and ultrasound (US). These medical images are large and have a huge amount of storage. This problem is being solved by making use of compression. In this area, lots of work is done. However, before adding more techniques to Fog, getting a high compression ratio (CR) in a shorter time is required, therefore consuming less network traffic. Le Gall5/3 integer wavelet transform (IWT) and a set partitioning in hierarchical trees (SPIHT) encoder were used in this study’s implementation of an image compression technique. MRI is used in the experiments. The suggested technique uses a modified CR and less compression time (CT) to compress the medical image. The proposed approach results in an average CR of 84.8895%. A 40.92% peak signal-to-noise ratio (PSNR) PNSR value is present. Using the Huffman coding, the proposed approach reduces the CT by 36.7434 s compared to the IWT. Regarding CR, the suggested technique outperforms IWTs with Huffman coding by 12%. The current approach has a 72.36% CR. The suggested work’s shortcoming is that the high CR caused a decline in the quality of the medical images. PSNR values can be raised, and more effort can be made to compress colored medical images and 3-dimensional medical images.\",\"PeriodicalId\":44688,\"journal\":{\"name\":\"International Journal of Image and Graphics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Image and Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219467825500251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467825500251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

当涉及到在将数据发送到云服务器之前过滤和压缩数据时,雾计算是一笔大买卖。雾计算为降低医学图像处理的复杂性和稳步提高其可靠性提供了一种替代方法。医学图像是通过使用x射线、计算机断层扫描(CT)、磁共振成像(MRI)扫描和超声波(US)等成像处理方式产生的。这些医学图像很大,有很大的存储空间。利用压缩技术解决了这个问题。在这个领域,很多工作已经完成。但是,在为Fog添加更多的技术之前,需要在更短的时间内获得更高的压缩比(CR),从而减少网络流量的消耗。采用Le Gall5/3整数小波变换(IWT)和分层树集分割(SPIHT)编码器实现了一种图像压缩技术。实验中使用了核磁共振成像。该技术采用改进的CR和更短的压缩时间(CT)来压缩医学图像。该方法的平均CR为84.8895%。峰值信噪比(PSNR)为40.92%。采用霍夫曼编码,与IWT相比,该方法减少了36.7434秒的CT。关于CR,建议的技术优于霍夫曼编码的iwt 12%。目前的方法的CR为72.36%,建议的工作的缺点是高CR导致医学图像质量下降。可以提高PSNR值,并且可以更加努力地压缩彩色医学图像和三维医学图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Enhanced Compression Method for Medical Images Using SPIHT Encoder for Fog Computing
When it comes to filtering and compressing data before sending it to a cloud server, fog computing is a rummage sale. Fog computing enables an alternate method to reduce the complexity of medical image processing and steadily improve its dependability. Medical images are produced by imaging processing modalities using X-rays, computed tomography (CT) scans, magnetic resonance imaging (MRI) scans, and ultrasound (US). These medical images are large and have a huge amount of storage. This problem is being solved by making use of compression. In this area, lots of work is done. However, before adding more techniques to Fog, getting a high compression ratio (CR) in a shorter time is required, therefore consuming less network traffic. Le Gall5/3 integer wavelet transform (IWT) and a set partitioning in hierarchical trees (SPIHT) encoder were used in this study’s implementation of an image compression technique. MRI is used in the experiments. The suggested technique uses a modified CR and less compression time (CT) to compress the medical image. The proposed approach results in an average CR of 84.8895%. A 40.92% peak signal-to-noise ratio (PSNR) PNSR value is present. Using the Huffman coding, the proposed approach reduces the CT by 36.7434 s compared to the IWT. Regarding CR, the suggested technique outperforms IWTs with Huffman coding by 12%. The current approach has a 72.36% CR. The suggested work’s shortcoming is that the high CR caused a decline in the quality of the medical images. PSNR values can be raised, and more effort can be made to compress colored medical images and 3-dimensional medical images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Image and Graphics
International Journal of Image and Graphics COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
2.40
自引率
18.80%
发文量
67
期刊最新文献
Design and Implementation of Novel Hybrid and Multiscale- Assisted CNN and ResNet Using Heuristic Advancement of Adaptive Deep Segmentation for Iris Recognition Dwarf Mongoose Optimization with Transfer Learning-Based Fish Behavior Classification Model MRCNet: Multi-Level Residual Connectivity Network for Image Classification Feature Matching-Based Undersea Panoramic Image Stitching in VR Animation Multi-disease Classification of Mango Tree Using Meta-heuristic-based Weighted Feature Selection and LSTM Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1