相关与非等价伯努利随机变量和的极限定理

Q3 Business, Management and Accounting American Journal of Mathematical and Management Sciences Pub Date : 2020-04-02 DOI:10.1080/01966324.2019.1673266
Deepak Singh, Somesh Kumar
{"title":"相关与非等价伯努利随机变量和的极限定理","authors":"Deepak Singh, Somesh Kumar","doi":"10.1080/01966324.2019.1673266","DOIUrl":null,"url":null,"abstract":"SYNOPTIC ABSTRACT In this paper, a new class of dependent Bernoulli random variables is defined. Here the probability of success at a given trial is a function of the number of successes and probabilities of successes in the previous trials. The moment structure for this model is derived. Further, the strong law of large numbers, the central limit theorem and the law of iterated logarithm are established under a condition that the success probabilities be monotone. Simulations are carried out to demonstrate the law of large numbers and the central limit theorem.","PeriodicalId":35850,"journal":{"name":"American Journal of Mathematical and Management Sciences","volume":"39 1","pages":"150 - 165"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01966324.2019.1673266","citationCount":"2","resultStr":"{\"title\":\"Limit Theorems for Sums of Dependent and Non-Identical Bernoulli Random Variables\",\"authors\":\"Deepak Singh, Somesh Kumar\",\"doi\":\"10.1080/01966324.2019.1673266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SYNOPTIC ABSTRACT In this paper, a new class of dependent Bernoulli random variables is defined. Here the probability of success at a given trial is a function of the number of successes and probabilities of successes in the previous trials. The moment structure for this model is derived. Further, the strong law of large numbers, the central limit theorem and the law of iterated logarithm are established under a condition that the success probabilities be monotone. Simulations are carried out to demonstrate the law of large numbers and the central limit theorem.\",\"PeriodicalId\":35850,\"journal\":{\"name\":\"American Journal of Mathematical and Management Sciences\",\"volume\":\"39 1\",\"pages\":\"150 - 165\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01966324.2019.1673266\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematical and Management Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/01966324.2019.1673266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematical and Management Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/01966324.2019.1673266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 2

摘要

摘要本文定义了一类新的相关伯努利随机变量。在这里,给定试验的成功概率是成功次数和前几次试验成功概率的函数。推导了该模型的力矩结构。在成功概率为单调的条件下,建立了强大数定律、中心极限定理和迭代对数定律。通过仿真验证了大数定律和中心极限定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Limit Theorems for Sums of Dependent and Non-Identical Bernoulli Random Variables
SYNOPTIC ABSTRACT In this paper, a new class of dependent Bernoulli random variables is defined. Here the probability of success at a given trial is a function of the number of successes and probabilities of successes in the previous trials. The moment structure for this model is derived. Further, the strong law of large numbers, the central limit theorem and the law of iterated logarithm are established under a condition that the success probabilities be monotone. Simulations are carried out to demonstrate the law of large numbers and the central limit theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
American Journal of Mathematical and Management Sciences
American Journal of Mathematical and Management Sciences Business, Management and Accounting-Business, Management and Accounting (all)
CiteScore
2.70
自引率
0.00%
发文量
5
期刊最新文献
The Unit Omega Distribution, Properties and Its Application Classical and Bayesian Inference of Unit Gompertz Distribution Based on Progressively Type II Censored Data An Alternative Discrete Analogue of the Half-Logistic Distribution Based on Minimization of a Distance between Cumulative Distribution Functions Classical and Bayes Analyses of Autoregressive Model with Heavy-Tailed Error Testing on the Quantiles of a Single Normal Population in the Presence of Several Normal Populations with a Common Variance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1