物理化学中的量子统计,质量作用和表面催化定律

George S. Levy
{"title":"物理化学中的量子统计,质量作用和表面催化定律","authors":"George S. Levy","doi":"10.4236/OJPC.2018.84006","DOIUrl":null,"url":null,"abstract":"The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.","PeriodicalId":59839,"journal":{"name":"物理化学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Statistics in Physical Chemistry, the Law of Mass Action and Epicatalysis\",\"authors\":\"George S. Levy\",\"doi\":\"10.4236/OJPC.2018.84006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.\",\"PeriodicalId\":59839,\"journal\":{\"name\":\"物理化学期刊(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"物理化学期刊(英文)\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.4236/OJPC.2018.84006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"物理化学期刊(英文)","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.4236/OJPC.2018.84006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于麦克斯韦统计的质量作用定律不能解释最近的表催化实验,但当推广到非麦克斯韦统计时可以解释。对第二定律的挑战可以追溯到统计异质性,这些异质性超出了玻尔兹曼、吉布斯、托尔曼和冯·诺依曼在其H-定理中对同质性和不可区分性的假设。Epicatalystis在这些假设之外运作。因此,H-定理不适用于它,第二定律被绕过,而不是被打破。正确理解已有的物理学并不矛盾。其他基于异质统计的现象包括非麦克斯韦吸附、场致热电效应和互易霍尔效应。基本粒子具有众所周知的分布,如费米-狄拉克和玻色-爱因斯坦,但复合粒子,如参与化学反应的粒子,具有复杂而棘手的统计数据,不一定是麦克斯韦统计数据,最好由量子建模方法确定。一种用于寻找量子复合气体的量子热力学性质的分步解决方案,该解决方案避免了对大量复合粒子建模的计算要求,包括1)对少数粒子进行量子分子建模,2)确定它们可用的微观状态,3)产生它们的配分函数,4)生成它们的统计数据,和5)产生广义质量作用定律的表催化参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum Statistics in Physical Chemistry, the Law of Mass Action and Epicatalysis
The law of mass action, based on maxwellian statistics, cannot explain recent epicatalysis experiments but does when generalized to non-maxwellian statistics. Challenges to the second law are traced to statistical heterogeneity that falls outside assumptions of homogeneity and indistinguishability made by Boltzmann, Gibbs, Tolman and Von Neumann in their H-Theorems. Epicatalysis operates outside these assumptions. Hence, H-Theorems do not apply to it and the second law is bypassed, not broken. There is no contradiction with correctly understood established physics. Other phenomena also based on heterogeneous statistics include non-maxwellian adsorption, the field-induced thermoelectric effect and the reciprocal Hall effect. Elementary particles have well known distributions such as Fermi-Dirac and Bose Einstein, but composite particles such as those involved in chemical reactions, have complex intractable statistics not necessarily maxwellian and best determined by quantum modeling methods. A step by step solution for finding the quantum thermodynamic properties of a quantum composite gas, that avoids the computational requirement of modeling a large number of composite particles includes 1) quantum molecular modeling of a few particles, 2) determining their available microstates, 3) producing their partition function, 4) generating their statistics, and 5) producing the epicatalytic parameter for the generalized law of mass action.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
133
期刊最新文献
Evaluation of Physicochemical Parameters of Biosorbents Produced from Groundnut Hull Using Microwave Assisted Irradiation Method Fabrication and Characterization of Lanthanide-TiO2 Nanotube Composites Synthesis, Characterization and Biological Activity Evaluation of Schiff Bases Derived from 1,8-Diaminonaphtalène Combining Experimental and Quantum Chemical Study of 2-(5-Nitro-1,3-Dihydro Benzimidazol-2-Ylidene)-3-Oxo-3-(2-Oxo-2H-Chromen-3-yl) Propanenitrile as Copper Corrosion Inhibitor in Nitric Acid Solution Stability in Liquid Phases of Molecular Compounds Composed of Saturated Atoms: Application with the Even-Odd Rule and a Specific Periodic Table for Liquids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1