M. Saeed, MD Sohel Rana, MD Kausaraahmed, C. El‐Bayeh, Fang-zong Wang
{"title":"基于需求响应的微电网经济调度","authors":"M. Saeed, MD Sohel Rana, MD Kausaraahmed, C. El‐Bayeh, Fang-zong Wang","doi":"10.14710/ijred.2023.49165","DOIUrl":null,"url":null,"abstract":"The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.","PeriodicalId":44938,"journal":{"name":"International Journal of Renewable Energy Development-IJRED","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demand response based microgrid's economic dispatch\",\"authors\":\"M. Saeed, MD Sohel Rana, MD Kausaraahmed, C. El‐Bayeh, Fang-zong Wang\",\"doi\":\"10.14710/ijred.2023.49165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.\",\"PeriodicalId\":44938,\"journal\":{\"name\":\"International Journal of Renewable Energy Development-IJRED\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Renewable Energy Development-IJRED\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/ijred.2023.49165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Renewable Energy Development-IJRED","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/ijred.2023.49165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Demand response based microgrid's economic dispatch
The development of energy management tools for next-generation Distributed Energy Resources (DER) based power plants, such as photovoltaic, energy storage units, and wind, helps power systems be more flexible. Microgrids are entities that coordinate DERs in a persistently more decentralized fashion, hence decreasing the operational burden on the main grid and permitting them to give their full benefits. A new power framework has emerged due to the integration of DERs-based microgrids into the conventional power system. With the rapid advancement of microgrid technology, more emphasis has been placed on maintaining the microgrids' long-term economic feasibility while ensuring security and stability. The objective of this research is to provide a multi-objective economic operation technique for microgrids containing air-conditioning clusters (ACC) taking demand response into account. A dynamic price mechanism is proposed, accurately reflecting the system's actual operational status. For economic dispatch, flexible loads and air conditioners are considered demand response resources. Then, a consumer-profit model and an AC operating cost model are developed, with a set of pragmatic constraints of consumer comfort. The generation model is then designed to reduce the generation cost. Finally, a microgrid simulation platform is developed in MATLAB/Simulink, and a case is designed to evaluate the proposed method's performance. The findings show that consumer profit increases by 69.2% while ACC operational costs decrease by 18.2%. Moreover, generation costs are reduced without sacrificing customer satisfaction.