脱湿机理及其在先进纳米光子系统大规模制造中的应用

IF 16.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY International Materials Reviews Pub Date : 2019-11-17 DOI:10.1080/09506608.2018.1543832
Jongpil Ye, D. Zuev, S. Makarov
{"title":"脱湿机理及其在先进纳米光子系统大规模制造中的应用","authors":"Jongpil Ye, D. Zuev, S. Makarov","doi":"10.1080/09506608.2018.1543832","DOIUrl":null,"url":null,"abstract":"ABSTRACT Recent progress in submicron- and nano-fabrication technologies has led to the emergence of novel photonic structures such as optical nanoantennas and metasurfaces. Real-life applications of these advanced photonic structures still require substantial improvement of the fabrication processes, in terms of their throughput and cost-effectiveness. Because of its simplicity and effectiveness, dewetting of a thin film has attained increasing attention as a feasible process for improving the scalability and productivity. Here, we provide an overview of the mechanisms and phenomenologies of dewetting to foster an improved fundamental understanding necessary for the optimisation of the dewetting process condition and template design. We then review the strategies demonstrating the use of templated-dewetting for producing well-aligned arrays of submicron- and nanostructures with great control over their size, shape and arrangement. Recent applications of dewetted structures in advanced nanophotonics are reviewed with an emphasis on the exploitation of dewetting mechanisms. Special attention is given to the fabrication of resonant optical nanoantennas and nanophotonic applications in which high repeatability and throughput are important parameters: sensing, colourisation, photovoltaics and nonlinear light frequency conversion. We expect this review to provide a basis for the use of thin-film dewetting to realise the industrial-level fabrication of various practical advanced photonic systems.","PeriodicalId":14427,"journal":{"name":"International Materials Reviews","volume":"64 1","pages":"439 - 477"},"PeriodicalIF":16.8000,"publicationDate":"2019-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/09506608.2018.1543832","citationCount":"49","resultStr":"{\"title\":\"Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems\",\"authors\":\"Jongpil Ye, D. Zuev, S. Makarov\",\"doi\":\"10.1080/09506608.2018.1543832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Recent progress in submicron- and nano-fabrication technologies has led to the emergence of novel photonic structures such as optical nanoantennas and metasurfaces. Real-life applications of these advanced photonic structures still require substantial improvement of the fabrication processes, in terms of their throughput and cost-effectiveness. Because of its simplicity and effectiveness, dewetting of a thin film has attained increasing attention as a feasible process for improving the scalability and productivity. Here, we provide an overview of the mechanisms and phenomenologies of dewetting to foster an improved fundamental understanding necessary for the optimisation of the dewetting process condition and template design. We then review the strategies demonstrating the use of templated-dewetting for producing well-aligned arrays of submicron- and nanostructures with great control over their size, shape and arrangement. Recent applications of dewetted structures in advanced nanophotonics are reviewed with an emphasis on the exploitation of dewetting mechanisms. Special attention is given to the fabrication of resonant optical nanoantennas and nanophotonic applications in which high repeatability and throughput are important parameters: sensing, colourisation, photovoltaics and nonlinear light frequency conversion. We expect this review to provide a basis for the use of thin-film dewetting to realise the industrial-level fabrication of various practical advanced photonic systems.\",\"PeriodicalId\":14427,\"journal\":{\"name\":\"International Materials Reviews\",\"volume\":\"64 1\",\"pages\":\"439 - 477\"},\"PeriodicalIF\":16.8000,\"publicationDate\":\"2019-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/09506608.2018.1543832\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Materials Reviews\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09506608.2018.1543832\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Materials Reviews","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09506608.2018.1543832","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 49

摘要

亚微米和纳米制造技术的最新进展导致了新型光子结构的出现,如光学纳米天线和超表面。这些先进光子结构的实际应用仍然需要在其吞吐量和成本效益方面对制造工艺进行实质性改进。薄膜脱湿由于其简单和有效,作为一种提高可扩展性和生产率的可行工艺而受到越来越多的关注。在这里,我们概述了脱湿的机制和现象,以促进对脱湿工艺条件和模板设计优化所必需的改进的基本理解。然后,我们回顾了使用模板脱湿的策略,以产生亚微米和纳米结构的排列良好的阵列,并对其大小,形状和排列进行了很大的控制。综述了近年来脱湿结构在先进纳米光子学中的应用,重点介绍了脱湿机理的研究进展。特别关注谐振光学纳米天线的制造和纳米光子应用,其中高重复性和吞吐量是重要参数:传感,显色,光伏和非线性光频率转换。我们期望本综述为利用薄膜脱湿技术实现各种实用先进光子系统的工业级制造提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems
ABSTRACT Recent progress in submicron- and nano-fabrication technologies has led to the emergence of novel photonic structures such as optical nanoantennas and metasurfaces. Real-life applications of these advanced photonic structures still require substantial improvement of the fabrication processes, in terms of their throughput and cost-effectiveness. Because of its simplicity and effectiveness, dewetting of a thin film has attained increasing attention as a feasible process for improving the scalability and productivity. Here, we provide an overview of the mechanisms and phenomenologies of dewetting to foster an improved fundamental understanding necessary for the optimisation of the dewetting process condition and template design. We then review the strategies demonstrating the use of templated-dewetting for producing well-aligned arrays of submicron- and nanostructures with great control over their size, shape and arrangement. Recent applications of dewetted structures in advanced nanophotonics are reviewed with an emphasis on the exploitation of dewetting mechanisms. Special attention is given to the fabrication of resonant optical nanoantennas and nanophotonic applications in which high repeatability and throughput are important parameters: sensing, colourisation, photovoltaics and nonlinear light frequency conversion. We expect this review to provide a basis for the use of thin-film dewetting to realise the industrial-level fabrication of various practical advanced photonic systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Materials Reviews
International Materials Reviews 工程技术-材料科学:综合
CiteScore
28.50
自引率
0.00%
发文量
21
审稿时长
6 months
期刊介绍: International Materials Reviews (IMR) is a comprehensive publication that provides in-depth coverage of the current state and advancements in various materials technologies. With contributions from internationally respected experts, IMR offers a thorough analysis of the subject matter. It undergoes rigorous evaluation by committees in the United States and United Kingdom for ensuring the highest quality of content. Published by Sage on behalf of ASM International and the Institute of Materials, Minerals and Mining (UK), IMR is a valuable resource for professionals in the field. It is available online through Sage's platform, facilitating convenient access to its wealth of information. Jointly produced by ASM International and the Institute of Materials, Minerals and Mining (UK), IMR focuses on technologies that impact industries dealing with metals, structural ceramics, composite materials, and electronic materials. Its coverage spans from practical applications to theoretical and practical aspects of material extraction, production, fabrication, properties, and behavior.
期刊最新文献
Methods and models for fibre–matrix interface characterisation in fibre-reinforced polymers: a review Feedstock preparation, microstructures and mechanical properties for laser-based additive manufacturing of steel matrix composites Statistically equivalent representative volume elements (SERVE) for material behaviour analysis and multiscale modelling Ceramic-based electromagnetic wave absorbing materials and concepts towards lightweight, flexibility and thermal resistance Glass-contact refractory of the nuclear waste vitrification melters in the United States: a review of corrosion data and melter life
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1