Silvrano Adonias Dantas Neto, Matheus Albino, Ana Leite, A. Abreu
{"title":"预测岩石节理剪切特性的神经模糊模型的建立","authors":"Silvrano Adonias Dantas Neto, Matheus Albino, Ana Leite, A. Abreu","doi":"10.28927/sr.2022.003322","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to present predictive models of dilation and shear stress of rock discontinuities by applying the neuro-fuzzy technique, which uses a) the high capacity of artificial neural networks (ANN) to understand and to model complex multivariate phenomena, and b) the concepts of fuzzy sets theory to consider the variability of the input parameters in the proposed models’ responses. To develop the proposed models, experimental results were obtained from large-scale direct shear tests performed on different types of rock discontinuities and boundary conditions. The input variables of the proposed neuro-fuzzy models are the normal boundary stiffness, the ratio of fill thickness to asperity height, the initial normal stress, the joint roughness coefficient, the uniaxial compressive strength of the intact rock, the basic friction angle of the intact rock, the friction angle of the infill, and the shear displacement. The proposed models for dilation and shear stress provided results that fitted satisfactorily the experimental data, and the analyses of their performances indicated that they can represent the influence of the input variables on the shear behavior parameters of the rock discontinuities. The results from the neuro-fuzzy systems developed are also closer to the experimental data than those estimated by using traditional analytical methodologies existing in Rock Mechanics. This occurs because once considering the uncertainty of the input data, a more representative shear behavior prediction can be made by the neuro-fuzzy models.","PeriodicalId":43687,"journal":{"name":"Soils and Rocks","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of neuro-fuzzy models for predicting shear behavior of rock joints\",\"authors\":\"Silvrano Adonias Dantas Neto, Matheus Albino, Ana Leite, A. Abreu\",\"doi\":\"10.28927/sr.2022.003322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to present predictive models of dilation and shear stress of rock discontinuities by applying the neuro-fuzzy technique, which uses a) the high capacity of artificial neural networks (ANN) to understand and to model complex multivariate phenomena, and b) the concepts of fuzzy sets theory to consider the variability of the input parameters in the proposed models’ responses. To develop the proposed models, experimental results were obtained from large-scale direct shear tests performed on different types of rock discontinuities and boundary conditions. The input variables of the proposed neuro-fuzzy models are the normal boundary stiffness, the ratio of fill thickness to asperity height, the initial normal stress, the joint roughness coefficient, the uniaxial compressive strength of the intact rock, the basic friction angle of the intact rock, the friction angle of the infill, and the shear displacement. The proposed models for dilation and shear stress provided results that fitted satisfactorily the experimental data, and the analyses of their performances indicated that they can represent the influence of the input variables on the shear behavior parameters of the rock discontinuities. The results from the neuro-fuzzy systems developed are also closer to the experimental data than those estimated by using traditional analytical methodologies existing in Rock Mechanics. This occurs because once considering the uncertainty of the input data, a more representative shear behavior prediction can be made by the neuro-fuzzy models.\",\"PeriodicalId\":43687,\"journal\":{\"name\":\"Soils and Rocks\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soils and Rocks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.003322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soils and Rocks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.003322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Development of neuro-fuzzy models for predicting shear behavior of rock joints
The purpose of this article is to present predictive models of dilation and shear stress of rock discontinuities by applying the neuro-fuzzy technique, which uses a) the high capacity of artificial neural networks (ANN) to understand and to model complex multivariate phenomena, and b) the concepts of fuzzy sets theory to consider the variability of the input parameters in the proposed models’ responses. To develop the proposed models, experimental results were obtained from large-scale direct shear tests performed on different types of rock discontinuities and boundary conditions. The input variables of the proposed neuro-fuzzy models are the normal boundary stiffness, the ratio of fill thickness to asperity height, the initial normal stress, the joint roughness coefficient, the uniaxial compressive strength of the intact rock, the basic friction angle of the intact rock, the friction angle of the infill, and the shear displacement. The proposed models for dilation and shear stress provided results that fitted satisfactorily the experimental data, and the analyses of their performances indicated that they can represent the influence of the input variables on the shear behavior parameters of the rock discontinuities. The results from the neuro-fuzzy systems developed are also closer to the experimental data than those estimated by using traditional analytical methodologies existing in Rock Mechanics. This occurs because once considering the uncertainty of the input data, a more representative shear behavior prediction can be made by the neuro-fuzzy models.
期刊介绍:
Soils and Rocks publishes papers in English in the broad fields of Geotechnical Engineering, Engineering Geology and Environmental Engineering. The Journal is published in April, August and December. The journal, with the name "Solos e Rochas", was first published in 1978 by the Graduate School of Engineering-Federal University of Rio de Janeiro (COPPE-UFRJ).