克里格参数优化:全局与局部搜索策略

Pub Date : 2021-05-26 DOI:10.1080/25726838.2021.1930964
C. F. Fonseca, J. Costa, R. Hundelshaussen, M. Bassani
{"title":"克里格参数优化:全局与局部搜索策略","authors":"C. F. Fonseca, J. Costa, R. Hundelshaussen, M. Bassani","doi":"10.1080/25726838.2021.1930964","DOIUrl":null,"url":null,"abstract":"ABSTRACT Kriging methods require parameters to define search strategy (kriging neighbourhood). These parameters affect the precision and accuracy of its estimates. Frequently, the choice of these parameters is merely subjective. Some practitioners prioritise estimates that lead to models with a reduced smoothing effect or a regression slope as close as possible to one. However, it is prevalent to use the same kriging neighbourhood or search strategy for all blocks estimated within a stationary domain. This study presents a contribution that challenges this concept by using a block-by-block optimisation approach focused on the localised kriging parameter optimisation (LKPO) methodology. A comparative study is carried out, and some of the metrics analysed include the kriging efficiency and the slope of regression (typical in optimising methodologies in the mining industry). The results indicate that the LKPO methodology provides more accurate and precise estimates than those based on a global kriging neighbourhood.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726838.2021.1930964","citationCount":"1","resultStr":"{\"title\":\"Kriging parameter optimisation: global versus local search strategies\",\"authors\":\"C. F. Fonseca, J. Costa, R. Hundelshaussen, M. Bassani\",\"doi\":\"10.1080/25726838.2021.1930964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Kriging methods require parameters to define search strategy (kriging neighbourhood). These parameters affect the precision and accuracy of its estimates. Frequently, the choice of these parameters is merely subjective. Some practitioners prioritise estimates that lead to models with a reduced smoothing effect or a regression slope as close as possible to one. However, it is prevalent to use the same kriging neighbourhood or search strategy for all blocks estimated within a stationary domain. This study presents a contribution that challenges this concept by using a block-by-block optimisation approach focused on the localised kriging parameter optimisation (LKPO) methodology. A comparative study is carried out, and some of the metrics analysed include the kriging efficiency and the slope of regression (typical in optimising methodologies in the mining industry). The results indicate that the LKPO methodology provides more accurate and precise estimates than those based on a global kriging neighbourhood.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/25726838.2021.1930964\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/25726838.2021.1930964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726838.2021.1930964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要克里格方法需要参数来定义搜索策略(克里格邻域)。这些参数影响其估计的精度和准确性。通常,这些参数的选择只是主观的。一些从业者优先考虑导致模型平滑效果降低或回归斜率尽可能接近1的估计。然而,对于在平稳域内估计的所有块,通常使用相同的克里格邻域或搜索策略。本研究通过使用专注于局部克里格参数优化(LKPO)方法的逐块优化方法,对这一概念提出了挑战。进行了比较研究,分析的一些指标包括克里格效率和回归斜率(采矿业优化方法中的典型指标)。结果表明,LKPO方法比基于全球克里格邻域的方法提供了更准确和精确的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Kriging parameter optimisation: global versus local search strategies
ABSTRACT Kriging methods require parameters to define search strategy (kriging neighbourhood). These parameters affect the precision and accuracy of its estimates. Frequently, the choice of these parameters is merely subjective. Some practitioners prioritise estimates that lead to models with a reduced smoothing effect or a regression slope as close as possible to one. However, it is prevalent to use the same kriging neighbourhood or search strategy for all blocks estimated within a stationary domain. This study presents a contribution that challenges this concept by using a block-by-block optimisation approach focused on the localised kriging parameter optimisation (LKPO) methodology. A comparative study is carried out, and some of the metrics analysed include the kriging efficiency and the slope of regression (typical in optimising methodologies in the mining industry). The results indicate that the LKPO methodology provides more accurate and precise estimates than those based on a global kriging neighbourhood.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1