{"title":"斯洛伐克西喀尔巴阡山脉Veporic单元榴辉岩相变质镁铁岩","authors":"M. Janák, Š. Méres, L. Medaris, Jr.","doi":"10.31577/geolcarp.71.3.1","DOIUrl":null,"url":null,"abstract":"Metaultramafic rocks closely associated with eclogites in the Veporic unit of the Western Carpathians record a complex P–T evolution, including the effects of high-pressure (HP) metamorphism. The investigated metaultramafite is chemically similar to pyroxenite, has a fineto medium-grained texture, is composed predominantly of olivine and amphibole, and contains minor amounts of garnet, orthopyroxene, spinel, chlorite, ilmenite and carbonates. The highpressure mineral assemblage is garnet (XMg = 0.46–0.47) + olivine (XMg = 0.71–0.73) + low-Al orthopyroxene (XMg = 0.77–0.78; Al = 0.02–0.03 apfu) + ilmenite + chlorite (XMg = 0.87–0.89) + Cr-spinel. Chromium-rich spinel is most likely a relict from the pre-HP metamorphic stage, possibly of magmatic origin. Calculations using a garnet– orthopyroxene Fe–Mg exchange thermometer, Al-in-orthopyroxene barometer, and thermodynamic modelling in the system SiO2–TiO2– Al2O3–FeO–MgO–CaO–H2O indicate that the peak conditions of metamorphism reached 2.4±0.4 GPa and 702±20 °C. Subsequent decompression and retrogression is recorded by the formation of aluminous orthopyroxene, replacement of garnet by symplectites of Al-spinel and amphibole (hornblende), transformation of Cr-spinel to Al-spinel and formation of abundant amphibole in the matrix. Metaultramafic rocks in the Veporic unit thus provide evidence, in addition to that from associated eclogites, for high-pressure metamorphism in the pre-Alpine basement of the Western Carpathians, which is most likely of Variscan age.","PeriodicalId":12545,"journal":{"name":"Geologica Carpathica","volume":"71 1","pages":"209-220"},"PeriodicalIF":1.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Eclogite facies metaultramafite from the Veporic Unit (Western Carpathians, Slovakia)\",\"authors\":\"M. Janák, Š. Méres, L. Medaris, Jr.\",\"doi\":\"10.31577/geolcarp.71.3.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metaultramafic rocks closely associated with eclogites in the Veporic unit of the Western Carpathians record a complex P–T evolution, including the effects of high-pressure (HP) metamorphism. The investigated metaultramafite is chemically similar to pyroxenite, has a fineto medium-grained texture, is composed predominantly of olivine and amphibole, and contains minor amounts of garnet, orthopyroxene, spinel, chlorite, ilmenite and carbonates. The highpressure mineral assemblage is garnet (XMg = 0.46–0.47) + olivine (XMg = 0.71–0.73) + low-Al orthopyroxene (XMg = 0.77–0.78; Al = 0.02–0.03 apfu) + ilmenite + chlorite (XMg = 0.87–0.89) + Cr-spinel. Chromium-rich spinel is most likely a relict from the pre-HP metamorphic stage, possibly of magmatic origin. Calculations using a garnet– orthopyroxene Fe–Mg exchange thermometer, Al-in-orthopyroxene barometer, and thermodynamic modelling in the system SiO2–TiO2– Al2O3–FeO–MgO–CaO–H2O indicate that the peak conditions of metamorphism reached 2.4±0.4 GPa and 702±20 °C. Subsequent decompression and retrogression is recorded by the formation of aluminous orthopyroxene, replacement of garnet by symplectites of Al-spinel and amphibole (hornblende), transformation of Cr-spinel to Al-spinel and formation of abundant amphibole in the matrix. Metaultramafic rocks in the Veporic unit thus provide evidence, in addition to that from associated eclogites, for high-pressure metamorphism in the pre-Alpine basement of the Western Carpathians, which is most likely of Variscan age.\",\"PeriodicalId\":12545,\"journal\":{\"name\":\"Geologica Carpathica\",\"volume\":\"71 1\",\"pages\":\"209-220\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geologica Carpathica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.31577/geolcarp.71.3.1\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geologica Carpathica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.31577/geolcarp.71.3.1","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Eclogite facies metaultramafite from the Veporic Unit (Western Carpathians, Slovakia)
Metaultramafic rocks closely associated with eclogites in the Veporic unit of the Western Carpathians record a complex P–T evolution, including the effects of high-pressure (HP) metamorphism. The investigated metaultramafite is chemically similar to pyroxenite, has a fineto medium-grained texture, is composed predominantly of olivine and amphibole, and contains minor amounts of garnet, orthopyroxene, spinel, chlorite, ilmenite and carbonates. The highpressure mineral assemblage is garnet (XMg = 0.46–0.47) + olivine (XMg = 0.71–0.73) + low-Al orthopyroxene (XMg = 0.77–0.78; Al = 0.02–0.03 apfu) + ilmenite + chlorite (XMg = 0.87–0.89) + Cr-spinel. Chromium-rich spinel is most likely a relict from the pre-HP metamorphic stage, possibly of magmatic origin. Calculations using a garnet– orthopyroxene Fe–Mg exchange thermometer, Al-in-orthopyroxene barometer, and thermodynamic modelling in the system SiO2–TiO2– Al2O3–FeO–MgO–CaO–H2O indicate that the peak conditions of metamorphism reached 2.4±0.4 GPa and 702±20 °C. Subsequent decompression and retrogression is recorded by the formation of aluminous orthopyroxene, replacement of garnet by symplectites of Al-spinel and amphibole (hornblende), transformation of Cr-spinel to Al-spinel and formation of abundant amphibole in the matrix. Metaultramafic rocks in the Veporic unit thus provide evidence, in addition to that from associated eclogites, for high-pressure metamorphism in the pre-Alpine basement of the Western Carpathians, which is most likely of Variscan age.
期刊介绍:
GEOLOGICA CARPATHICA covers a wide spectrum of geological disciplines including geodynamics, tectonics and structural geology, volcanology, stratigraphy, geochronology and isotopic geology, karstology, geochemistry, mineralogy, petrology, lithology and sedimentology, paleogeography, paleoecology, paleobiology and paleontology, paleomagnetism, magnetostratigraphy and other branches of applied geophysics, economic and environmental geology, experimental and theoretical geoscientific studies. Geologica Carpathica , with its 60 year old tradition, presents high-quality research papers devoted to all aspects not only of the Alpine-Carpathian-Balkanian geoscience but also with adjacent regions originated from the Mediterranean Tethys and its continental foreland. Geologica Carpathica is an Official Journal of the Carpathian-Balkan Geological Association.