种子介导法制备(100)面包围钯晶体及其电化学表征

IF 2.3 Q3 ELECTROCHEMISTRY International journal of electrochemistry Pub Date : 2018-01-21 DOI:10.1155/2018/7138638
E. Higuchi, M. Kawai, Masanobu Chiku, H. Inoue
{"title":"种子介导法制备(100)面包围钯晶体及其电化学表征","authors":"E. Higuchi, M. Kawai, Masanobu Chiku, H. Inoue","doi":"10.1155/2018/7138638","DOIUrl":null,"url":null,"abstract":"Pd crystals enclosed by (100) facets were prepared in an aqueous solution containing cetyltrimethylammonium bromide (CTAB) as the capping agent and ascorbic acid as the reducing agent at 30, 40, and 50°C by a modified seed-mediated fabrication technique. Regardless of the reaction temperature, the absorption peak between 300 and 400 nm assigned to decreased with an increase in the reaction time after the addition of ascorbic acid in the aqueous solution containing CTAB because of Pd deposition. The field emission-scanning electron microscopy images showed that the Pd crystals were enclosed by only (100) facets, and their fractions depended on the reaction temperature. The ratios of the peak current at 0.54 and 0.48 V were 0.60, 0.54, and 0.47 for the samples prepared at 30, 40, and 50°C, respectively, suggesting that the proportion of the (100) facet on the Pd surface was higher at lower temperatures.","PeriodicalId":13933,"journal":{"name":"International journal of electrochemistry","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2018-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2018/7138638","citationCount":"4","resultStr":"{\"title\":\"Synthesis and Electrochemical Characterization of Palladium Crystals Enclosed by (100) Facets by Seed-Mediated Fabrication\",\"authors\":\"E. Higuchi, M. Kawai, Masanobu Chiku, H. Inoue\",\"doi\":\"10.1155/2018/7138638\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pd crystals enclosed by (100) facets were prepared in an aqueous solution containing cetyltrimethylammonium bromide (CTAB) as the capping agent and ascorbic acid as the reducing agent at 30, 40, and 50°C by a modified seed-mediated fabrication technique. Regardless of the reaction temperature, the absorption peak between 300 and 400 nm assigned to decreased with an increase in the reaction time after the addition of ascorbic acid in the aqueous solution containing CTAB because of Pd deposition. The field emission-scanning electron microscopy images showed that the Pd crystals were enclosed by only (100) facets, and their fractions depended on the reaction temperature. The ratios of the peak current at 0.54 and 0.48 V were 0.60, 0.54, and 0.47 for the samples prepared at 30, 40, and 50°C, respectively, suggesting that the proportion of the (100) facet on the Pd surface was higher at lower temperatures.\",\"PeriodicalId\":13933,\"journal\":{\"name\":\"International journal of electrochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2018-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1155/2018/7138638\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of electrochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2018/7138638\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of electrochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2018/7138638","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 4

摘要

在以十六烷基三甲基溴化铵(CTAB)为封盖剂,抗坏血酸为还原剂的水溶液中,采用改良的种子介导制备技术,在30、40和50℃条件下制备了(100)个面包裹的Pd晶体。无论反应温度如何,在含CTAB的水溶液中加入抗坏血酸后,由于Pd的沉积,300 ~ 400 nm之间的吸收峰随反应时间的增加而减小。场发射扫描电镜图像显示,Pd晶体仅被(100)个面包围,其分数与反应温度有关。在30,40和50℃下制备的样品,在0.54和0.48 V时的峰值电流比值分别为0.60,0.54和0.47,这表明(100)面在Pd表面的比例在较低温度下较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis and Electrochemical Characterization of Palladium Crystals Enclosed by (100) Facets by Seed-Mediated Fabrication
Pd crystals enclosed by (100) facets were prepared in an aqueous solution containing cetyltrimethylammonium bromide (CTAB) as the capping agent and ascorbic acid as the reducing agent at 30, 40, and 50°C by a modified seed-mediated fabrication technique. Regardless of the reaction temperature, the absorption peak between 300 and 400 nm assigned to decreased with an increase in the reaction time after the addition of ascorbic acid in the aqueous solution containing CTAB because of Pd deposition. The field emission-scanning electron microscopy images showed that the Pd crystals were enclosed by only (100) facets, and their fractions depended on the reaction temperature. The ratios of the peak current at 0.54 and 0.48 V were 0.60, 0.54, and 0.47 for the samples prepared at 30, 40, and 50°C, respectively, suggesting that the proportion of the (100) facet on the Pd surface was higher at lower temperatures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
2
审稿时长
7 weeks
期刊最新文献
Effect of Surface Composition on Electrochemical Oxidation Reaction of Carbon Monoxide and Ethanol of PtxRh1−x Solid Solution Electrodes Development and Characterization of a New Solid Polymer Electrolyte for Supercapacitor Device Size-Dependent Chlorinated Nitrogen-Doped Carbon Nanotubes: Their Use as Electrochemical Detectors for Catechol and Resorcinol Enabling the Electrochemical Performance of Maricite-NaMnPO4 and Maricite-NaFePO4 Cathode Materials in Sodium-Ion Batteries Electrooxidation and Development of a Highly Sensitive Electrochemical Probe for Trace Determination of the Steroid 11-Desoxycorticosterone Drug Residues in Water
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1