铁氧化还原蛋白样折叠起始片段信息的序列分析

Q3 Biochemistry, Genetics and Molecular Biology BMC Structural Biology Pub Date : 2014-05-23 DOI:10.1186/1472-6807-14-15
Masanari Matsuoka, Takeshi Kikuchi
{"title":"铁氧化还原蛋白样折叠起始片段信息的序列分析","authors":"Masanari Matsuoka,&nbsp;Takeshi Kikuchi","doi":"10.1186/1472-6807-14-15","DOIUrl":null,"url":null,"abstract":"<p>While some studies have shown that the 3D protein structures are more conservative than their amino acid sequences, other experimental studies have shown that even if two proteins share the same topology, they may have different folding pathways. There are many studies investigating this issue with molecular dynamics or Go-like model simulations, however, one should be able to obtain the same information by analyzing the proteins’ amino acid sequences, if the sequences contain all the information about the 3D structures. In this study, we use information about protein sequences to predict the location of their folding segments. We focus on proteins with a ferredoxin-like fold, which has a characteristic topology. Some of these proteins have different folding segments.</p><p>Despite the simplicity of our methods, we are able to correctly determine the experimentally identified folding segments by predicting the location of the compact regions considered to play an important role in structural formation. We also apply our sequence analyses to some homologues of each protein and confirm that there are highly conserved folding segments despite the homologues’ sequence diversity. These homologues have similar folding segments even though the homology of two proteins’ sequences is not so high.</p><p>Our analyses have proven useful for investigating the common or different folding features of the proteins studied.</p>","PeriodicalId":51240,"journal":{"name":"BMC Structural Biology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1472-6807-14-15","citationCount":"14","resultStr":"{\"title\":\"Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins\",\"authors\":\"Masanari Matsuoka,&nbsp;Takeshi Kikuchi\",\"doi\":\"10.1186/1472-6807-14-15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While some studies have shown that the 3D protein structures are more conservative than their amino acid sequences, other experimental studies have shown that even if two proteins share the same topology, they may have different folding pathways. There are many studies investigating this issue with molecular dynamics or Go-like model simulations, however, one should be able to obtain the same information by analyzing the proteins’ amino acid sequences, if the sequences contain all the information about the 3D structures. In this study, we use information about protein sequences to predict the location of their folding segments. We focus on proteins with a ferredoxin-like fold, which has a characteristic topology. Some of these proteins have different folding segments.</p><p>Despite the simplicity of our methods, we are able to correctly determine the experimentally identified folding segments by predicting the location of the compact regions considered to play an important role in structural formation. We also apply our sequence analyses to some homologues of each protein and confirm that there are highly conserved folding segments despite the homologues’ sequence diversity. These homologues have similar folding segments even though the homology of two proteins’ sequences is not so high.</p><p>Our analyses have proven useful for investigating the common or different folding features of the proteins studied.</p>\",\"PeriodicalId\":51240,\"journal\":{\"name\":\"BMC Structural Biology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/1472-6807-14-15\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Structural Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/1472-6807-14-15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Structural Biology","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/1472-6807-14-15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 14

摘要

虽然一些研究表明蛋白质的三维结构比它们的氨基酸序列更为保守,但其他实验研究表明,即使两个蛋白质具有相同的拓扑结构,它们也可能具有不同的折叠途径。有许多研究用分子动力学或Go-like模型模拟来研究这个问题,然而,如果序列包含了有关蛋白质三维结构的所有信息,那么通过分析蛋白质的氨基酸序列应该能够获得相同的信息。在这项研究中,我们使用有关蛋白质序列的信息来预测其折叠段的位置。我们专注于具有铁氧化还原蛋白样折叠的蛋白质,它具有特征拓扑结构。其中一些蛋白质有不同的折叠片段。尽管我们的方法很简单,但我们能够通过预测被认为在结构形成中起重要作用的紧凑区域的位置来正确地确定实验识别的折叠段。我们还对每个蛋白的一些同源物进行了序列分析,并证实尽管同源物的序列多样性,但仍存在高度保守的折叠片段。这些同源物具有相似的折叠片段,即使两个蛋白质序列的同源性不是很高。我们的分析已被证明对研究蛋白质的共同或不同折叠特征是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sequence analysis on the information of folding initiation segments in ferredoxin-like fold proteins

While some studies have shown that the 3D protein structures are more conservative than their amino acid sequences, other experimental studies have shown that even if two proteins share the same topology, they may have different folding pathways. There are many studies investigating this issue with molecular dynamics or Go-like model simulations, however, one should be able to obtain the same information by analyzing the proteins’ amino acid sequences, if the sequences contain all the information about the 3D structures. In this study, we use information about protein sequences to predict the location of their folding segments. We focus on proteins with a ferredoxin-like fold, which has a characteristic topology. Some of these proteins have different folding segments.

Despite the simplicity of our methods, we are able to correctly determine the experimentally identified folding segments by predicting the location of the compact regions considered to play an important role in structural formation. We also apply our sequence analyses to some homologues of each protein and confirm that there are highly conserved folding segments despite the homologues’ sequence diversity. These homologues have similar folding segments even though the homology of two proteins’ sequences is not so high.

Our analyses have proven useful for investigating the common or different folding features of the proteins studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: BMC Structural Biology is an open access, peer-reviewed journal that considers articles on investigations into the structure of biological macromolecules, including solving structures, structural and functional analyses, and computational modeling.
期刊最新文献
Characterization of putative proteins encoded by variable ORFs in white spot syndrome virus genome Correction to: Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region Effect of low complexity regions within the PvMSP3α block II on the tertiary structure of the protein and implications to immune escape mechanisms QRNAS: software tool for refinement of nucleic acid structures Classification of the human THAP protein family identifies an evolutionarily conserved coiled coil region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1