机器学习算法在森林物种分类中的应用

Táscilla Magalhães Loiola, R. Fantinel, Fernanda Dias Dos Santos, Franciele de Bastos, Mateus Sabadi Schuh, Pablo Fernandes, Bruna Andiele Simões, R. S. Pereira
{"title":"机器学习算法在森林物种分类中的应用","authors":"Táscilla Magalhães Loiola, R. Fantinel, Fernanda Dias Dos Santos, Franciele de Bastos, Mateus Sabadi Schuh, Pablo Fernandes, Bruna Andiele Simões, R. S. Pereira","doi":"10.11137/1982-3908_2023_46_50490","DOIUrl":null,"url":null,"abstract":"Optimization in the process of managing forest resources seeks alternatives that make data collection possible. One of them alternatives is spectroradiometry, which consists of measuring the spectral response, having as product the response of the target in relation to the incident radiation along the electromagnetic spectrum, and that, using machine learning, with pre-selected models, makes it possible to identify. Given the above, the study aimed to use machine learning algorithms to classify species by vegetation indices from reflectance data. The study was developed at the Federal University from Santa Maria, working with the species Ficus benjamina, Inga marginata, Handroanthus chrysotrichus, Psidium cattleianum, Salix humboldtiana, Corymbia citriodora and Myrcianthes pungens, and spectral readings of the leaves were taken using the FieldSpec®3 spectroradiometer connected to RTS-3ZC3 integrating  sphere. The reflectance values with wavelength ranged in amplitude from 350 ƞm to 2,500 ƞm and spectral resolution of 1 ƞm. Vegetation indices were calculated using the software R Studio, being: NDVI, SAVI, RVI, GNDVI, NDWI, NDWI2, GEMI, DVI, TVI, RVI, MSAVI, WDVI. The algorithms used to develop machine learning were: Random Forest (RF), k-Nearest Neighbors (K-NN), Naive Bayes (NB) and Support Vector Machine (SVM). RF proves to be the most appropriate for data validation, with 85% global accuracy, followed by SVM, with 71%, K-NN with 64% and NB with 35%. The indices with the best performance to point the species were NDWI and SAVI. ","PeriodicalId":39973,"journal":{"name":"Anuario do Instituto de Geociencias","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of Machine Learning Algorithms in the Classification of Forest Species\",\"authors\":\"Táscilla Magalhães Loiola, R. Fantinel, Fernanda Dias Dos Santos, Franciele de Bastos, Mateus Sabadi Schuh, Pablo Fernandes, Bruna Andiele Simões, R. S. Pereira\",\"doi\":\"10.11137/1982-3908_2023_46_50490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization in the process of managing forest resources seeks alternatives that make data collection possible. One of them alternatives is spectroradiometry, which consists of measuring the spectral response, having as product the response of the target in relation to the incident radiation along the electromagnetic spectrum, and that, using machine learning, with pre-selected models, makes it possible to identify. Given the above, the study aimed to use machine learning algorithms to classify species by vegetation indices from reflectance data. The study was developed at the Federal University from Santa Maria, working with the species Ficus benjamina, Inga marginata, Handroanthus chrysotrichus, Psidium cattleianum, Salix humboldtiana, Corymbia citriodora and Myrcianthes pungens, and spectral readings of the leaves were taken using the FieldSpec®3 spectroradiometer connected to RTS-3ZC3 integrating  sphere. The reflectance values with wavelength ranged in amplitude from 350 ƞm to 2,500 ƞm and spectral resolution of 1 ƞm. Vegetation indices were calculated using the software R Studio, being: NDVI, SAVI, RVI, GNDVI, NDWI, NDWI2, GEMI, DVI, TVI, RVI, MSAVI, WDVI. The algorithms used to develop machine learning were: Random Forest (RF), k-Nearest Neighbors (K-NN), Naive Bayes (NB) and Support Vector Machine (SVM). RF proves to be the most appropriate for data validation, with 85% global accuracy, followed by SVM, with 71%, K-NN with 64% and NB with 35%. The indices with the best performance to point the species were NDWI and SAVI. \",\"PeriodicalId\":39973,\"journal\":{\"name\":\"Anuario do Instituto de Geociencias\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anuario do Instituto de Geociencias\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11137/1982-3908_2023_46_50490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anuario do Instituto de Geociencias","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11137/1982-3908_2023_46_50490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

在管理森林资源的过程中,寻求使数据收集成为可能的替代办法。其中一种选择是光谱辐射测量法,它包括测量光谱响应,将目标的响应与电磁波谱上的入射辐射相关联,并使用机器学习和预先选择的模型,使识别成为可能。鉴于上述情况,本研究旨在利用机器学习算法根据反射率数据中的植被指数对物种进行分类。这项研究是由圣玛丽亚联邦大学开展的,研究对象包括榕树、叶缘Inga、黄毛Handroanthus chrysotrichus、Psidium catleanum、Salix humboldtiana、Corymbia citriodora和Myrcianthes pungens,并使用连接到rs - 3zc3积分球的FieldSpec®3光谱辐射仪获取叶片的光谱读数。波长范围为350 ƞm ~ 2500 ƞm,光谱分辨率为1 ƞm。利用R Studio软件计算植被指数为:NDVI、SAVI、RVI、GNDVI、NDWI、NDWI2、GEMI、DVI、TVI、RVI、MSAVI、WDVI。用于开发机器学习的算法有:随机森林(RF)、k近邻(K-NN)、朴素贝叶斯(NB)和支持向量机(SVM)。RF被证明是最适合数据验证的方法,其全球准确率为85%,其次是SVM,为71%,K-NN为64%,NB为35%。NDWI和SAVI是对物种表现最好的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Use of Machine Learning Algorithms in the Classification of Forest Species
Optimization in the process of managing forest resources seeks alternatives that make data collection possible. One of them alternatives is spectroradiometry, which consists of measuring the spectral response, having as product the response of the target in relation to the incident radiation along the electromagnetic spectrum, and that, using machine learning, with pre-selected models, makes it possible to identify. Given the above, the study aimed to use machine learning algorithms to classify species by vegetation indices from reflectance data. The study was developed at the Federal University from Santa Maria, working with the species Ficus benjamina, Inga marginata, Handroanthus chrysotrichus, Psidium cattleianum, Salix humboldtiana, Corymbia citriodora and Myrcianthes pungens, and spectral readings of the leaves were taken using the FieldSpec®3 spectroradiometer connected to RTS-3ZC3 integrating  sphere. The reflectance values with wavelength ranged in amplitude from 350 ƞm to 2,500 ƞm and spectral resolution of 1 ƞm. Vegetation indices were calculated using the software R Studio, being: NDVI, SAVI, RVI, GNDVI, NDWI, NDWI2, GEMI, DVI, TVI, RVI, MSAVI, WDVI. The algorithms used to develop machine learning were: Random Forest (RF), k-Nearest Neighbors (K-NN), Naive Bayes (NB) and Support Vector Machine (SVM). RF proves to be the most appropriate for data validation, with 85% global accuracy, followed by SVM, with 71%, K-NN with 64% and NB with 35%. The indices with the best performance to point the species were NDWI and SAVI. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Anuario do Instituto de Geociencias
Anuario do Instituto de Geociencias Social Sciences-Geography, Planning and Development
CiteScore
0.70
自引率
0.00%
发文量
45
审稿时长
28 weeks
期刊介绍: The Anuário do Instituto de Geociências (Anuário IGEO) is an official publication of the Universidade Federal do Rio de Janeiro (UFRJ – CCMN) with the objective to publish original scientific papers of broad interest in the field of Geology, Paleontology, Geography and Meteorology.
期刊最新文献
Evaluation of Precipitation Simulations at the Subseasonal Range in the Sao Francisco River Basin, Brazil Classification of Urban Solid Waste Collected with the Use of Ecobarriers in Watercourses in the Municipality of Caçapava do Sul, RS How Eco-Spatial Edutourism Support Sustainability in Coastal Areas in South Malang, Indonesia? Semiautomatic Mapping of Center Pivot Irrigated Areas Using Sentinel-2 Images and GEOBIA Approach Characterization and Geological Meaning of the Crystalline Basement Occurrence in the Unaí Region, Minas Gerais State (Central Brasilia Belt)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1