基于不完全指定函数和if决策图的量子电路综合

A. Prihozhy
{"title":"基于不完全指定函数和if决策图的量子电路综合","authors":"A. Prihozhy","doi":"10.33581/2520-6508-2021-3-84-97","DOIUrl":null,"url":null,"abstract":"The problem of synthesis and optimisation of logical reversible and quantum circuits from functional descriptions represented as decision diagrams is considered. It is one of the key problems being solved with the aim of creating quantum computing technology and quantum computers. A new method of stepwise transformation of the initial functional specification to a quantum circuit is proposed, which provides for the following project states: reduced ordered binary decision diagram, if-decision diagram, functional if-decision diagram, reversible circuit and quantum circuit. The novelty of the method consists in extending the Shannon and Davio expansions of a Boolean function on a single variable to the expansions of the same Boolean function on another function with obtaining decomposition products that are represented by incompletely defined Boolean functions. Uncertainty in the decomposition products gives remarkable opportunities for minimising the graph representation of the specified function. Instead of two outgoing branches of the binary diagram vertex, three outgoing branches of the if-diagram vertex are generated, which increase the level of parallelism in reversible and quantum circuits. For each transformation step, appropriate mapping rules are proposed that reduce the number of lines, gates and the depth of the reversible and quantum circuit. The comparison of new results with the results given by the known method of mapping the vertices of binary decision diagram into cascades of reversible and quantum gates shows a significant improvement in the quality of quantum circuits that are synthesised by the proposed method.","PeriodicalId":36323,"journal":{"name":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of quantum circuits based on incompletely specified functions and if-decision diagrams\",\"authors\":\"A. Prihozhy\",\"doi\":\"10.33581/2520-6508-2021-3-84-97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of synthesis and optimisation of logical reversible and quantum circuits from functional descriptions represented as decision diagrams is considered. It is one of the key problems being solved with the aim of creating quantum computing technology and quantum computers. A new method of stepwise transformation of the initial functional specification to a quantum circuit is proposed, which provides for the following project states: reduced ordered binary decision diagram, if-decision diagram, functional if-decision diagram, reversible circuit and quantum circuit. The novelty of the method consists in extending the Shannon and Davio expansions of a Boolean function on a single variable to the expansions of the same Boolean function on another function with obtaining decomposition products that are represented by incompletely defined Boolean functions. Uncertainty in the decomposition products gives remarkable opportunities for minimising the graph representation of the specified function. Instead of two outgoing branches of the binary diagram vertex, three outgoing branches of the if-diagram vertex are generated, which increase the level of parallelism in reversible and quantum circuits. For each transformation step, appropriate mapping rules are proposed that reduce the number of lines, gates and the depth of the reversible and quantum circuit. The comparison of new results with the results given by the known method of mapping the vertices of binary decision diagram into cascades of reversible and quantum gates shows a significant improvement in the quality of quantum circuits that are synthesised by the proposed method.\",\"PeriodicalId\":36323,\"journal\":{\"name\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33581/2520-6508-2021-3-84-97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhurnal Belorusskogo Gosudarstvennogo Universiteta. Matematika. Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33581/2520-6508-2021-3-84-97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

考虑了用决策图表示的功能描述的逻辑可逆电路和量子电路的综合和优化问题。这是为了创造量子计算技术和量子计算机而正在解决的关键问题之一。提出了一种将初始功能说明书逐步转换为量子电路的新方法,该方法提供了以下方案状态:降阶二值决策图、if-决策图、功能if-决策图、可逆电路和量子电路。该方法的新颖之处在于将布尔函数在单个变量上的Shannon展开式和Davio展开式扩展到同一布尔函数在另一个函数上的展开式,得到由不完全定义的布尔函数表示的分解积。分解产物中的不确定性为最小化指定函数的图表示提供了显著的机会。由二元图顶点的两个出线分支生成了if图顶点的三个出线分支,从而提高了可逆电路和量子电路的并行度。对于每个变换步骤,提出了适当的映射规则,以减少可逆电路和量子电路的线数、门数和深度。将新结果与已知的将二元决策图的顶点映射到可逆和量子门级联的方法所得到的结果进行比较,表明用本文方法合成的量子电路的质量有了显著的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synthesis of quantum circuits based on incompletely specified functions and if-decision diagrams
The problem of synthesis and optimisation of logical reversible and quantum circuits from functional descriptions represented as decision diagrams is considered. It is one of the key problems being solved with the aim of creating quantum computing technology and quantum computers. A new method of stepwise transformation of the initial functional specification to a quantum circuit is proposed, which provides for the following project states: reduced ordered binary decision diagram, if-decision diagram, functional if-decision diagram, reversible circuit and quantum circuit. The novelty of the method consists in extending the Shannon and Davio expansions of a Boolean function on a single variable to the expansions of the same Boolean function on another function with obtaining decomposition products that are represented by incompletely defined Boolean functions. Uncertainty in the decomposition products gives remarkable opportunities for minimising the graph representation of the specified function. Instead of two outgoing branches of the binary diagram vertex, three outgoing branches of the if-diagram vertex are generated, which increase the level of parallelism in reversible and quantum circuits. For each transformation step, appropriate mapping rules are proposed that reduce the number of lines, gates and the depth of the reversible and quantum circuit. The comparison of new results with the results given by the known method of mapping the vertices of binary decision diagram into cascades of reversible and quantum gates shows a significant improvement in the quality of quantum circuits that are synthesised by the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
21
审稿时长
16 weeks
期刊最新文献
Algorithm for solving the knapsack problem with certain properties of Pareto layers Numerical study of the relative equilibrium of a droplet with a simply connected free surface on a rotating plane On the Hosoya polynomial of the third type of the chain hex-derived network Algebraic equations and polynomials over the ring of p-complex numbers On the theory of operator interpolation in spaces of rectangular matrixes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1