{"title":"Re w=2600时展向旋转平面Couette流的磁滞行为","authors":"Yuhan Huang, Zhenhua Xia, Shiyi Chen","doi":"10.1080/14685248.2020.1856859","DOIUrl":null,"url":null,"abstract":"Hysteresis behaviour was reported in spanwise rotating plane Couette flow (RPCF) at Reynolds number with varying rotation number in a recent work (Huang et al. Phys. Rev. Fluids 2019;4:052401(R)). Here, is half of the velocity difference between two walls, h is half of the channel width, ν is the kinematic viscosity and is the constant angular velocity in the spanwise direction. In this paper, we perform two groups of direct numerical simulations at where Ro varies in steps along two opposite directions to investigate the hysteresis behaviour in RPCF at a relatively higher Reynolds number. It is found that when Reynolds number increases to 2600, the hysteresis of flow structures still exists in RPCF, but the span of the hysteresis loop shrinks from to . Turbulent statistics, such as the friction Reynolds number, turbulent kinetic energy and mean velocity gradient at the centreline, all exhibit similar hysteresis behaviours.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":"22 1","pages":"254 - 266"},"PeriodicalIF":1.5000,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/14685248.2020.1856859","citationCount":"0","resultStr":"{\"title\":\"Hysteresis behaviour in spanwise rotating plane Couette flow at Re w = 2600\",\"authors\":\"Yuhan Huang, Zhenhua Xia, Shiyi Chen\",\"doi\":\"10.1080/14685248.2020.1856859\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hysteresis behaviour was reported in spanwise rotating plane Couette flow (RPCF) at Reynolds number with varying rotation number in a recent work (Huang et al. Phys. Rev. Fluids 2019;4:052401(R)). Here, is half of the velocity difference between two walls, h is half of the channel width, ν is the kinematic viscosity and is the constant angular velocity in the spanwise direction. In this paper, we perform two groups of direct numerical simulations at where Ro varies in steps along two opposite directions to investigate the hysteresis behaviour in RPCF at a relatively higher Reynolds number. It is found that when Reynolds number increases to 2600, the hysteresis of flow structures still exists in RPCF, but the span of the hysteresis loop shrinks from to . Turbulent statistics, such as the friction Reynolds number, turbulent kinetic energy and mean velocity gradient at the centreline, all exhibit similar hysteresis behaviours.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":\"22 1\",\"pages\":\"254 - 266\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2020-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/14685248.2020.1856859\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2020.1856859\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2020.1856859","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
Hysteresis behaviour in spanwise rotating plane Couette flow at Re w = 2600
Hysteresis behaviour was reported in spanwise rotating plane Couette flow (RPCF) at Reynolds number with varying rotation number in a recent work (Huang et al. Phys. Rev. Fluids 2019;4:052401(R)). Here, is half of the velocity difference between two walls, h is half of the channel width, ν is the kinematic viscosity and is the constant angular velocity in the spanwise direction. In this paper, we perform two groups of direct numerical simulations at where Ro varies in steps along two opposite directions to investigate the hysteresis behaviour in RPCF at a relatively higher Reynolds number. It is found that when Reynolds number increases to 2600, the hysteresis of flow structures still exists in RPCF, but the span of the hysteresis loop shrinks from to . Turbulent statistics, such as the friction Reynolds number, turbulent kinetic energy and mean velocity gradient at the centreline, all exhibit similar hysteresis behaviours.
期刊介绍:
Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence.
JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.