{"title":"基于现场测量和动态模拟的夏季热舒适性评价——以阿尔及利亚-撒哈拉地区炎热干旱气候为例","authors":"Amri Khaoula, Alkama Djamel","doi":"10.18186/thermal.1245164","DOIUrl":null,"url":null,"abstract":"The interest to ensure thermal comfort becomes one of the major challenges in the building sector, not only for the quality of interior ambiences, but also to minimize the energy rate consumed for heating and cooling systems. Th s paper presents the advantage of using the adaptive approach and numerical simulation to assess the level of thermal comfort of dwellings of different architectural typology in hot climate. For this purpose, the method is based on in situ measurements effected on two samples of traditional and contemporary typology; using anemometer instrument, where the climatic parameters measured inside and outside samples are: ambient temperature, relative humidity rate and air velocity. The simulation work is performed by Energy-Plus software; consequently experimental tests are realized on the local material in order to know their physical and thermal characteristics. The results obtained demonstrate the efficiency of the traditional passive devices, which are able to provide a comfortable thermal ambience without referring to the air conditioning system, with an operating temperature of 30.5ºC and a satisfaction rate of 80%.","PeriodicalId":45841,"journal":{"name":"Journal of Thermal Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of summer thermal comfort using in situ measurement and dynamic simulation, hot and arid climate in Algerian Saharan region as a case study\",\"authors\":\"Amri Khaoula, Alkama Djamel\",\"doi\":\"10.18186/thermal.1245164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interest to ensure thermal comfort becomes one of the major challenges in the building sector, not only for the quality of interior ambiences, but also to minimize the energy rate consumed for heating and cooling systems. Th s paper presents the advantage of using the adaptive approach and numerical simulation to assess the level of thermal comfort of dwellings of different architectural typology in hot climate. For this purpose, the method is based on in situ measurements effected on two samples of traditional and contemporary typology; using anemometer instrument, where the climatic parameters measured inside and outside samples are: ambient temperature, relative humidity rate and air velocity. The simulation work is performed by Energy-Plus software; consequently experimental tests are realized on the local material in order to know their physical and thermal characteristics. The results obtained demonstrate the efficiency of the traditional passive devices, which are able to provide a comfortable thermal ambience without referring to the air conditioning system, with an operating temperature of 30.5ºC and a satisfaction rate of 80%.\",\"PeriodicalId\":45841,\"journal\":{\"name\":\"Journal of Thermal Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermal Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18186/thermal.1245164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18186/thermal.1245164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Evaluation of summer thermal comfort using in situ measurement and dynamic simulation, hot and arid climate in Algerian Saharan region as a case study
The interest to ensure thermal comfort becomes one of the major challenges in the building sector, not only for the quality of interior ambiences, but also to minimize the energy rate consumed for heating and cooling systems. Th s paper presents the advantage of using the adaptive approach and numerical simulation to assess the level of thermal comfort of dwellings of different architectural typology in hot climate. For this purpose, the method is based on in situ measurements effected on two samples of traditional and contemporary typology; using anemometer instrument, where the climatic parameters measured inside and outside samples are: ambient temperature, relative humidity rate and air velocity. The simulation work is performed by Energy-Plus software; consequently experimental tests are realized on the local material in order to know their physical and thermal characteristics. The results obtained demonstrate the efficiency of the traditional passive devices, which are able to provide a comfortable thermal ambience without referring to the air conditioning system, with an operating temperature of 30.5ºC and a satisfaction rate of 80%.
期刊介绍:
Journal of Thermal Enginering is aimed at giving a recognized platform to students, researchers, research scholars, teachers, authors and other professionals in the field of research in Thermal Engineering subjects, to publish their original and current research work to a wide, international audience. In order to achieve this goal, we will have applied for SCI-Expanded Index in 2021 after having an Impact Factor in 2020. The aim of the journal, published on behalf of Yildiz Technical University in Istanbul-Turkey, is to not only include actual, original and applied studies prepared on the sciences of heat transfer and thermodynamics, and contribute to the literature of engineering sciences on the national and international areas but also help the development of Mechanical Engineering. Engineers and academicians from disciplines of Power Plant Engineering, Energy Engineering, Building Services Engineering, HVAC Engineering, Solar Engineering, Wind Engineering, Nanoengineering, surface engineering, thin film technologies, and Computer Aided Engineering will be expected to benefit from this journal’s outputs.