{"title":"有限状态空间马尔可夫环境下临界分支过程的极限定理","authors":"I. Grama, Ronan Lauvergnat, Émile Le Page","doi":"10.1017/apr.2021.18","DOIUrl":null,"url":null,"abstract":"Abstract Let \n$(Z_n)_{n\\geq 0}$\n be a critical branching process in a random environment defined by a Markov chain \n$(X_n)_{n\\geq 0}$\n with values in a finite state space \n$\\mathbb{X}$\n . Let \n$ S_n = \\sum_{k=1}^n \\ln f_{X_k}^{\\prime}(1)$\n be the Markov walk associated to \n$(X_n)_{n\\geq 0}$\n , where \n$f_i$\n is the offspring generating function when the environment is \n$i \\in \\mathbb{X}$\n . Conditioned on the event \n$\\{ Z_n>0\\}$\n , we show the nondegeneracy of the limit law of the normalized number of particles \n${Z_n}/{e^{S_n}}$\n and determine the limit of the law of \n$\\frac{S_n}{\\sqrt{n}} $\n jointly with \n$X_n$\n . Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of \n$ \\log Z_n$\n and \n$X_n$\n given \n$Z_n>0$\n .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limit theorems for critical branching processes in a finite-state-space Markovian environment\",\"authors\":\"I. Grama, Ronan Lauvergnat, Émile Le Page\",\"doi\":\"10.1017/apr.2021.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let \\n$(Z_n)_{n\\\\geq 0}$\\n be a critical branching process in a random environment defined by a Markov chain \\n$(X_n)_{n\\\\geq 0}$\\n with values in a finite state space \\n$\\\\mathbb{X}$\\n . Let \\n$ S_n = \\\\sum_{k=1}^n \\\\ln f_{X_k}^{\\\\prime}(1)$\\n be the Markov walk associated to \\n$(X_n)_{n\\\\geq 0}$\\n , where \\n$f_i$\\n is the offspring generating function when the environment is \\n$i \\\\in \\\\mathbb{X}$\\n . Conditioned on the event \\n$\\\\{ Z_n>0\\\\}$\\n , we show the nondegeneracy of the limit law of the normalized number of particles \\n${Z_n}/{e^{S_n}}$\\n and determine the limit of the law of \\n$\\\\frac{S_n}{\\\\sqrt{n}} $\\n jointly with \\n$X_n$\\n . Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of \\n$ \\\\log Z_n$\\n and \\n$X_n$\\n given \\n$Z_n>0$\\n .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/apr.2021.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/apr.2021.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Limit theorems for critical branching processes in a finite-state-space Markovian environment
Abstract Let
$(Z_n)_{n\geq 0}$
be a critical branching process in a random environment defined by a Markov chain
$(X_n)_{n\geq 0}$
with values in a finite state space
$\mathbb{X}$
. Let
$ S_n = \sum_{k=1}^n \ln f_{X_k}^{\prime}(1)$
be the Markov walk associated to
$(X_n)_{n\geq 0}$
, where
$f_i$
is the offspring generating function when the environment is
$i \in \mathbb{X}$
. Conditioned on the event
$\{ Z_n>0\}$
, we show the nondegeneracy of the limit law of the normalized number of particles
${Z_n}/{e^{S_n}}$
and determine the limit of the law of
$\frac{S_n}{\sqrt{n}} $
jointly with
$X_n$
. Based on these results we establish a Yaglom-type theorem which specifies the limit of the joint law of
$ \log Z_n$
and
$X_n$
given
$Z_n>0$
.