Haoxiang Yin, Jun Li, H. Yan, Hanying Cai, Yanjian Wan, Gang Yao, Yong Guo, B. Lai
{"title":"CuCo2O4纳米粒子活化过氧单硫酸盐对阿特拉津的长效去除","authors":"Haoxiang Yin, Jun Li, H. Yan, Hanying Cai, Yanjian Wan, Gang Yao, Yong Guo, B. Lai","doi":"10.2166/wrd.2021.046","DOIUrl":null,"url":null,"abstract":"\n The effect of peroxymonosulfate (PMS) activated by nanocrystalline CuCo2O4 (NPS) on removal of atrazine (ATZ) was studied. First, the main experimental parameters were studied, including CuCo2O4 dose, PMS dose, initial pH value, and co-existing ion. The removal of ATZ (>99%) was attained under the optimal conditions (i.e., 150 mg/L CuCo2O4, 0.2 mM PMS, 5 mg/L ATZ, initial pH value of 6.8, and reaction time of 30 min). However, the removal of ATZ only reached 20.9% in the PMS alone system and there was no significant ATZ removal when adding CuCo2O4 alone into the solution, proving the good performance of the CuCo2O4/PMS system. Furthermore, reusability of CuCo2O4 was tested through five consecutive runs. To confirm which main active radicals were responsible in the system, two radical quenching experiments were carried out and electron paramagnetic resonance (EPR) was tested. In addition, the characterization of fresh and reacted CuCo2O4 NPs was tested by SEM, TEM, EDS, XRD, and XPS. Subsequently, based on the characterization of CuCo2O4 NPs and identification of radicals, ≡Cu2+/ ≡ Cu+ and ≡Co3+/ ≡ Co2+ were considered to be the main catalytic species, while the synergistic effect of Cu and Co played a crucial role. Finally, the degradation pathway of ATZ was proposed.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Activation of peroxymonosulfate by CuCo2O4 nano-particles towards long-lasting removal of atrazine\",\"authors\":\"Haoxiang Yin, Jun Li, H. Yan, Hanying Cai, Yanjian Wan, Gang Yao, Yong Guo, B. Lai\",\"doi\":\"10.2166/wrd.2021.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The effect of peroxymonosulfate (PMS) activated by nanocrystalline CuCo2O4 (NPS) on removal of atrazine (ATZ) was studied. First, the main experimental parameters were studied, including CuCo2O4 dose, PMS dose, initial pH value, and co-existing ion. The removal of ATZ (>99%) was attained under the optimal conditions (i.e., 150 mg/L CuCo2O4, 0.2 mM PMS, 5 mg/L ATZ, initial pH value of 6.8, and reaction time of 30 min). However, the removal of ATZ only reached 20.9% in the PMS alone system and there was no significant ATZ removal when adding CuCo2O4 alone into the solution, proving the good performance of the CuCo2O4/PMS system. Furthermore, reusability of CuCo2O4 was tested through five consecutive runs. To confirm which main active radicals were responsible in the system, two radical quenching experiments were carried out and electron paramagnetic resonance (EPR) was tested. In addition, the characterization of fresh and reacted CuCo2O4 NPs was tested by SEM, TEM, EDS, XRD, and XPS. Subsequently, based on the characterization of CuCo2O4 NPs and identification of radicals, ≡Cu2+/ ≡ Cu+ and ≡Co3+/ ≡ Co2+ were considered to be the main catalytic species, while the synergistic effect of Cu and Co played a crucial role. Finally, the degradation pathway of ATZ was proposed.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2021.046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2021.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
Activation of peroxymonosulfate by CuCo2O4 nano-particles towards long-lasting removal of atrazine
The effect of peroxymonosulfate (PMS) activated by nanocrystalline CuCo2O4 (NPS) on removal of atrazine (ATZ) was studied. First, the main experimental parameters were studied, including CuCo2O4 dose, PMS dose, initial pH value, and co-existing ion. The removal of ATZ (>99%) was attained under the optimal conditions (i.e., 150 mg/L CuCo2O4, 0.2 mM PMS, 5 mg/L ATZ, initial pH value of 6.8, and reaction time of 30 min). However, the removal of ATZ only reached 20.9% in the PMS alone system and there was no significant ATZ removal when adding CuCo2O4 alone into the solution, proving the good performance of the CuCo2O4/PMS system. Furthermore, reusability of CuCo2O4 was tested through five consecutive runs. To confirm which main active radicals were responsible in the system, two radical quenching experiments were carried out and electron paramagnetic resonance (EPR) was tested. In addition, the characterization of fresh and reacted CuCo2O4 NPs was tested by SEM, TEM, EDS, XRD, and XPS. Subsequently, based on the characterization of CuCo2O4 NPs and identification of radicals, ≡Cu2+/ ≡ Cu+ and ≡Co3+/ ≡ Co2+ were considered to be the main catalytic species, while the synergistic effect of Cu and Co played a crucial role. Finally, the degradation pathway of ATZ was proposed.
期刊介绍:
Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.