CuCo2O4纳米粒子活化过氧单硫酸盐对阿特拉津的长效去除

IF 2.3 Q2 Environmental Science Journal of Water Reuse and Desalination Pub Date : 2021-11-03 DOI:10.2166/wrd.2021.046
Haoxiang Yin, Jun Li, H. Yan, Hanying Cai, Yanjian Wan, Gang Yao, Yong Guo, B. Lai
{"title":"CuCo2O4纳米粒子活化过氧单硫酸盐对阿特拉津的长效去除","authors":"Haoxiang Yin, Jun Li, H. Yan, Hanying Cai, Yanjian Wan, Gang Yao, Yong Guo, B. Lai","doi":"10.2166/wrd.2021.046","DOIUrl":null,"url":null,"abstract":"\n The effect of peroxymonosulfate (PMS) activated by nanocrystalline CuCo2O4 (NPS) on removal of atrazine (ATZ) was studied. First, the main experimental parameters were studied, including CuCo2O4 dose, PMS dose, initial pH value, and co-existing ion. The removal of ATZ (>99%) was attained under the optimal conditions (i.e., 150 mg/L CuCo2O4, 0.2 mM PMS, 5 mg/L ATZ, initial pH value of 6.8, and reaction time of 30 min). However, the removal of ATZ only reached 20.9% in the PMS alone system and there was no significant ATZ removal when adding CuCo2O4 alone into the solution, proving the good performance of the CuCo2O4/PMS system. Furthermore, reusability of CuCo2O4 was tested through five consecutive runs. To confirm which main active radicals were responsible in the system, two radical quenching experiments were carried out and electron paramagnetic resonance (EPR) was tested. In addition, the characterization of fresh and reacted CuCo2O4 NPs was tested by SEM, TEM, EDS, XRD, and XPS. Subsequently, based on the characterization of CuCo2O4 NPs and identification of radicals, ≡Cu2+/ ≡ Cu+ and ≡Co3+/ ≡ Co2+ were considered to be the main catalytic species, while the synergistic effect of Cu and Co played a crucial role. Finally, the degradation pathway of ATZ was proposed.","PeriodicalId":17556,"journal":{"name":"Journal of Water Reuse and Desalination","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Activation of peroxymonosulfate by CuCo2O4 nano-particles towards long-lasting removal of atrazine\",\"authors\":\"Haoxiang Yin, Jun Li, H. Yan, Hanying Cai, Yanjian Wan, Gang Yao, Yong Guo, B. Lai\",\"doi\":\"10.2166/wrd.2021.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The effect of peroxymonosulfate (PMS) activated by nanocrystalline CuCo2O4 (NPS) on removal of atrazine (ATZ) was studied. First, the main experimental parameters were studied, including CuCo2O4 dose, PMS dose, initial pH value, and co-existing ion. The removal of ATZ (>99%) was attained under the optimal conditions (i.e., 150 mg/L CuCo2O4, 0.2 mM PMS, 5 mg/L ATZ, initial pH value of 6.8, and reaction time of 30 min). However, the removal of ATZ only reached 20.9% in the PMS alone system and there was no significant ATZ removal when adding CuCo2O4 alone into the solution, proving the good performance of the CuCo2O4/PMS system. Furthermore, reusability of CuCo2O4 was tested through five consecutive runs. To confirm which main active radicals were responsible in the system, two radical quenching experiments were carried out and electron paramagnetic resonance (EPR) was tested. In addition, the characterization of fresh and reacted CuCo2O4 NPs was tested by SEM, TEM, EDS, XRD, and XPS. Subsequently, based on the characterization of CuCo2O4 NPs and identification of radicals, ≡Cu2+/ ≡ Cu+ and ≡Co3+/ ≡ Co2+ were considered to be the main catalytic species, while the synergistic effect of Cu and Co played a crucial role. Finally, the degradation pathway of ATZ was proposed.\",\"PeriodicalId\":17556,\"journal\":{\"name\":\"Journal of Water Reuse and Desalination\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Reuse and Desalination\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wrd.2021.046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Reuse and Desalination","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wrd.2021.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 25

摘要

研究了纳米晶CuCo2O4 (NPS)活化过氧单硫酸盐(PMS)去除阿特拉津(ATZ)的效果。首先,研究了CuCo2O4剂量、PMS剂量、初始pH值、共存离子等主要实验参数。在CuCo2O4浓度为150 mg/L、PMS浓度为0.2 mM、ATZ浓度为5 mg/L、初始pH值为6.8、反应时间为30 min的条件下,ATZ的去除率达到99%(>)。而单独加入PMS时,ATZ去除率仅为20.9%,单独加入CuCo2O4时,ATZ去除率不明显,证明了CuCo2O4/PMS体系的良好性能。此外,通过连续五次运行测试了CuCo2O4的可重用性。为了确定系统中主要活性自由基的作用,进行了两次自由基猝灭实验和电子顺磁共振(EPR)测试。此外,采用SEM、TEM、EDS、XRD、XPS等手段对新鲜CuCo2O4 NPs和反应后的CuCo2O4 NPs进行了表征。随后,基于CuCo2O4 NPs的表征和自由基的鉴定,≡Cu2+/≡Cu +和≡Co3+/≡Co2+被认为是主要的催化物质,而Cu和Co的协同作用起着至关重要的作用。最后,提出了ATZ的降解途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activation of peroxymonosulfate by CuCo2O4 nano-particles towards long-lasting removal of atrazine
The effect of peroxymonosulfate (PMS) activated by nanocrystalline CuCo2O4 (NPS) on removal of atrazine (ATZ) was studied. First, the main experimental parameters were studied, including CuCo2O4 dose, PMS dose, initial pH value, and co-existing ion. The removal of ATZ (>99%) was attained under the optimal conditions (i.e., 150 mg/L CuCo2O4, 0.2 mM PMS, 5 mg/L ATZ, initial pH value of 6.8, and reaction time of 30 min). However, the removal of ATZ only reached 20.9% in the PMS alone system and there was no significant ATZ removal when adding CuCo2O4 alone into the solution, proving the good performance of the CuCo2O4/PMS system. Furthermore, reusability of CuCo2O4 was tested through five consecutive runs. To confirm which main active radicals were responsible in the system, two radical quenching experiments were carried out and electron paramagnetic resonance (EPR) was tested. In addition, the characterization of fresh and reacted CuCo2O4 NPs was tested by SEM, TEM, EDS, XRD, and XPS. Subsequently, based on the characterization of CuCo2O4 NPs and identification of radicals, ≡Cu2+/ ≡ Cu+ and ≡Co3+/ ≡ Co2+ were considered to be the main catalytic species, while the synergistic effect of Cu and Co played a crucial role. Finally, the degradation pathway of ATZ was proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Water Reuse and Desalination
Journal of Water Reuse and Desalination ENGINEERING, ENVIRONMENTAL-WATER RESOURCES
CiteScore
4.30
自引率
0.00%
发文量
23
审稿时长
16 weeks
期刊介绍: Journal of Water Reuse and Desalination publishes refereed review articles, theoretical and experimental research papers, new findings and issues of unplanned and planned reuse. The journal welcomes contributions from developing and developed countries.
期刊最新文献
Innovative strategies for treatment and management of saline water/wastewater Evaluation of UVLED disinfection for biofouling control during distribution of wastewater effluent Bioremoval efficiency and metabolomic profiles of cellular responses of Chlorella pyrenoidosa to phenol and 4-fluorophenol Construction and empirical research of the evaluation index system of environmental protection enterprises’ competitiveness based on the Delphi and AHP methods Deep learning algorithms were used to generate photovoltaic renewable energy in saline water analysis via an oxidation process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1