高阶二元马尔可夫链模型的拟合优度检验

IF 0.1 Q4 MATHEMATICS Cogent mathematics & statistics Pub Date : 2018-01-01 DOI:10.1080/23311835.2017.1421003
Mahboobeh Zangeneh Sirdari, M. Islam
{"title":"高阶二元马尔可夫链模型的拟合优度检验","authors":"Mahboobeh Zangeneh Sirdari, M. Islam","doi":"10.1080/23311835.2017.1421003","DOIUrl":null,"url":null,"abstract":"Abstract When the interest is in making statements about change based on repeated measurements of discrete data, one way to do so is using Markov chain models. Goodness of fit test to find a good model is very important in analyzing the underlying patterns and relationships in the repeated measures data. To test for the various associations in the models, the likelihood ratio and Wald tests are used. However, it has been observed that the efficient score tests can provide equally good tests and can provide an easier alternative. In this paper, we provide an extension of Tsiatis method for goodness of fit test on higher order Markov chains. In our method, we follow the approach of Tsiatis goodness of fit test in logistic regression models. New method provided in this paper is applied to real-life data to examine the suitability of the techniques.","PeriodicalId":92618,"journal":{"name":"Cogent mathematics & statistics","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311835.2017.1421003","citationCount":"3","resultStr":"{\"title\":\"Goodness of fit test for higher order binary Markov chain models\",\"authors\":\"Mahboobeh Zangeneh Sirdari, M. Islam\",\"doi\":\"10.1080/23311835.2017.1421003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When the interest is in making statements about change based on repeated measurements of discrete data, one way to do so is using Markov chain models. Goodness of fit test to find a good model is very important in analyzing the underlying patterns and relationships in the repeated measures data. To test for the various associations in the models, the likelihood ratio and Wald tests are used. However, it has been observed that the efficient score tests can provide equally good tests and can provide an easier alternative. In this paper, we provide an extension of Tsiatis method for goodness of fit test on higher order Markov chains. In our method, we follow the approach of Tsiatis goodness of fit test in logistic regression models. New method provided in this paper is applied to real-life data to examine the suitability of the techniques.\",\"PeriodicalId\":92618,\"journal\":{\"name\":\"Cogent mathematics & statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23311835.2017.1421003\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cogent mathematics & statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23311835.2017.1421003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent mathematics & statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311835.2017.1421003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

当对基于离散数据的重复测量的变化的陈述感兴趣时,一种方法是使用马尔可夫链模型。拟合优度检验对于分析重复测量数据的潜在规律和关系是非常重要的。为了检验模型中的各种关联,使用了似然比和沃尔德检验。然而,据观察,有效的分数测试可以提供同样好的测试,并且可以提供一个更容易的替代方案。本文给出了高阶马尔可夫链拟合优度检验的Tsiatis方法的推广。在我们的方法中,我们在逻辑回归模型中采用Tsiatis拟合优度检验的方法。将本文提出的新方法应用于实际数据,以检验这些技术的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Goodness of fit test for higher order binary Markov chain models
Abstract When the interest is in making statements about change based on repeated measurements of discrete data, one way to do so is using Markov chain models. Goodness of fit test to find a good model is very important in analyzing the underlying patterns and relationships in the repeated measures data. To test for the various associations in the models, the likelihood ratio and Wald tests are used. However, it has been observed that the efficient score tests can provide equally good tests and can provide an easier alternative. In this paper, we provide an extension of Tsiatis method for goodness of fit test on higher order Markov chains. In our method, we follow the approach of Tsiatis goodness of fit test in logistic regression models. New method provided in this paper is applied to real-life data to examine the suitability of the techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
On roman domination number of functigraph and its complement Weakly compatible mappings with respect to a generalized c-distance and common fixed point results On W-contractions of Jungck-Ćirić-Wardowski-type in metric spaces Some compactness results by elliptic operators Yamabe solitons on 3-dimensional cosymplectic manifolds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1