{"title":"利用深度强化学习实现舱外活动辅助机器人的稳定宇航员跟随","authors":"Ruijun Hu, Yulin Zhang, Chuanxiang Li","doi":"10.1177/17298806221108606","DOIUrl":null,"url":null,"abstract":"The use of mobile robots for assisting astronauts in extravehicular activities could be an effective option for improving mission productivity and crew safety. It is thus critical that these robots follow the astronaut and maintain a stable distance to provide personalized and timely assistance. However, most extraterrestrial bodies exhibit rugged terrain that can impede a robot’s movements. As such, a novel predictive-guide following strategy is proposed to improve the stability of astronaut–robot distance in obstructive environments. This strategy combines a deep reinforcement learning navigator and a Kalman filter-based predictor to generate optimized motion sequences for safely following the astronaut and acquire predictive guidance concerning future astronaut movements. The proposed model achieved a success rate of 95.0% in simulated navigation tasks and adapted well to untrained complex environments and varied robot movement settings. Comparative tests indicated our strategy managed to stabilize the following distance to within ±1.0 m of the reference value in obstructed environments, significantly outperforming other following strategies. The feasibility and advantage of the proposed approach was validated with a physical robotic follower in a Mars-like environment.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward stable astronaut following of extravehicular activity assistant robots using deep reinforcement learning\",\"authors\":\"Ruijun Hu, Yulin Zhang, Chuanxiang Li\",\"doi\":\"10.1177/17298806221108606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of mobile robots for assisting astronauts in extravehicular activities could be an effective option for improving mission productivity and crew safety. It is thus critical that these robots follow the astronaut and maintain a stable distance to provide personalized and timely assistance. However, most extraterrestrial bodies exhibit rugged terrain that can impede a robot’s movements. As such, a novel predictive-guide following strategy is proposed to improve the stability of astronaut–robot distance in obstructive environments. This strategy combines a deep reinforcement learning navigator and a Kalman filter-based predictor to generate optimized motion sequences for safely following the astronaut and acquire predictive guidance concerning future astronaut movements. The proposed model achieved a success rate of 95.0% in simulated navigation tasks and adapted well to untrained complex environments and varied robot movement settings. Comparative tests indicated our strategy managed to stabilize the following distance to within ±1.0 m of the reference value in obstructed environments, significantly outperforming other following strategies. The feasibility and advantage of the proposed approach was validated with a physical robotic follower in a Mars-like environment.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221108606\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221108606","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Toward stable astronaut following of extravehicular activity assistant robots using deep reinforcement learning
The use of mobile robots for assisting astronauts in extravehicular activities could be an effective option for improving mission productivity and crew safety. It is thus critical that these robots follow the astronaut and maintain a stable distance to provide personalized and timely assistance. However, most extraterrestrial bodies exhibit rugged terrain that can impede a robot’s movements. As such, a novel predictive-guide following strategy is proposed to improve the stability of astronaut–robot distance in obstructive environments. This strategy combines a deep reinforcement learning navigator and a Kalman filter-based predictor to generate optimized motion sequences for safely following the astronaut and acquire predictive guidance concerning future astronaut movements. The proposed model achieved a success rate of 95.0% in simulated navigation tasks and adapted well to untrained complex environments and varied robot movement settings. Comparative tests indicated our strategy managed to stabilize the following distance to within ±1.0 m of the reference value in obstructed environments, significantly outperforming other following strategies. The feasibility and advantage of the proposed approach was validated with a physical robotic follower in a Mars-like environment.
期刊介绍:
International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.