基于形态生理和纤维品质参数的棉花种质抗旱性鉴定

IF 1.6 Q3 PLANT SCIENCES Sabrao Journal of Breeding and Genetics Pub Date : 2023-08-31 DOI:10.54910/sabrao2023.55.4.6
M. Asif, A. A. Khan, H.M.N. Cheema, S. H. Khan, Z. Iqbal, Prof. Zahoor Ahmed, Soomro
{"title":"基于形态生理和纤维品质参数的棉花种质抗旱性鉴定","authors":"M. Asif, A. A. Khan, H.M.N. Cheema, S. H. Khan, Z. Iqbal, Prof. Zahoor Ahmed, Soomro","doi":"10.54910/sabrao2023.55.4.6","DOIUrl":null,"url":null,"abstract":"Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COTTON GERMPLASM CHARACTERIZATION FOR DROUGHT TOLERANCE BASED ON MORPHO-PHYSIOLOGICAL AND FIBER QUALITY PARAMETERS\",\"authors\":\"M. Asif, A. A. Khan, H.M.N. Cheema, S. H. Khan, Z. Iqbal, Prof. Zahoor Ahmed, Soomro\",\"doi\":\"10.54910/sabrao2023.55.4.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.\",\"PeriodicalId\":21328,\"journal\":{\"name\":\"Sabrao Journal of Breeding and Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sabrao Journal of Breeding and Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54910/sabrao2023.55.4.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

耐旱性是一种数量性状,对育种来说极具挑战性,尤其是对棉花等异四倍体而言。在水资源有限的情况下,必须开发耐旱品种,在整个夏季节约大量灌溉用水。因此,本研究采用了一种设计来统计分析与耐旱性相关的形态、生理和纤维质量参数,这是从现有棉花种质中选择更好基因型的综合方法。随后测量了在田间条件下生长的植物的这些参数。该种质包括150个棉花基因型,分别在2015-2016和2016-2017两个连续季节的常规和水分胁迫条件下进行研究。对不同形态生理和纤维质量参数进行数据记录。所研究的所有形态、生理和纤维质量参数的所有处理、基因型和基因型×环境相互作用都存在显著差异。加性主效应和增殖相互作用(AMMI)分析和AMMI双批次分析有助于分析结果,结果表明,棉花基因型FH-900、FH-901、FH-312、AS-1、AS-2、AS-3、RH510、RH-627、AR-2、AR-9、BH-118、BH-175、SLH-74、CIM-1100、CIM-598和MM-58具有耐旱性,在胁迫条件方面排名最高。此外,相关研究区分了与耐旱性相关的性状之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COTTON GERMPLASM CHARACTERIZATION FOR DROUGHT TOLERANCE BASED ON MORPHO-PHYSIOLOGICAL AND FIBER QUALITY PARAMETERS
Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sabrao Journal of Breeding and Genetics
Sabrao Journal of Breeding and Genetics 农林科学-奶制品与动物科学
CiteScore
1.90
自引率
50.00%
发文量
63
期刊介绍: The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO). Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society. The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards. The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.
期刊最新文献
ANALYSIS OF MOUNTAIN-FOREST CINNAMON SOIL TYPES IN THE BASIN OF THE NEW SHAMKIRCHAY RESERVOIR NITROGEN USE EFFICIENCY IN BREAD WHEAT ACROSS ENVIRONMENTS BIOFERTILIZERS EFFECTS ON THE ACTIVE COMPOUNDS OF SWEET BASIL (OCIMUM BASILICUM L.) HAYMAN’S DIALLEL ANALYSIS FOR PHYSIOLOGICAL TRAITS IN CHILI (CAPSICUM ANNUUM L.) SEEDS GENE ACTION AND HERITABILITY ESTIMATES IN F2 POPULATIONS OF FOXTAIL MILLET (SETARIA ITALICA L.)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1