M. Asif, A. A. Khan, H.M.N. Cheema, S. H. Khan, Z. Iqbal, Prof. Zahoor Ahmed, Soomro
{"title":"基于形态生理和纤维品质参数的棉花种质抗旱性鉴定","authors":"M. Asif, A. A. Khan, H.M.N. Cheema, S. H. Khan, Z. Iqbal, Prof. Zahoor Ahmed, Soomro","doi":"10.54910/sabrao2023.55.4.6","DOIUrl":null,"url":null,"abstract":"Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.","PeriodicalId":21328,"journal":{"name":"Sabrao Journal of Breeding and Genetics","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2023-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COTTON GERMPLASM CHARACTERIZATION FOR DROUGHT TOLERANCE BASED ON MORPHO-PHYSIOLOGICAL AND FIBER QUALITY PARAMETERS\",\"authors\":\"M. Asif, A. A. Khan, H.M.N. Cheema, S. H. Khan, Z. Iqbal, Prof. Zahoor Ahmed, Soomro\",\"doi\":\"10.54910/sabrao2023.55.4.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.\",\"PeriodicalId\":21328,\"journal\":{\"name\":\"Sabrao Journal of Breeding and Genetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sabrao Journal of Breeding and Genetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54910/sabrao2023.55.4.6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sabrao Journal of Breeding and Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54910/sabrao2023.55.4.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
COTTON GERMPLASM CHARACTERIZATION FOR DROUGHT TOLERANCE BASED ON MORPHO-PHYSIOLOGICAL AND FIBER QUALITY PARAMETERS
Drought tolerance is a quantitative trait that is exceedingly challenging to breed, especially for allotetraploids like cotton. The scenario of limited water resources necessitates developing droughttolerant cultivars that conserve significant irrigation water throughout the summer. Therefore, the presented study used a design to statistically analyze the morphological, physiological, and fiber quality parameters linked with drought tolerance, which is a comprehensive method for choosing better genotypes from the available cotton germplasm. Measuring these parameters ensued for plants grown under field conditions. The germplasm comprised 150 cotton genotypes studied at two water regimes, i.e., regular and water-stressed conditions for two consecutive seasons of 2015–2016 and 2016–2017. Data recording ran for different morpho-physiological and fiber quality parameters. Significant differences occurred for all the treatments, genotypes, and Genotype × Environment interaction for all the morphological, physiological, and fiber quality parameters under study. Additive Main effects and Multiplicative Interaction (AMMI) analysis and AMMI biplot analysis helped analyze the results, which revealed that the cotton genotypes FH-900, FH-901, FH-312, AS-1, AS-2, AS-3, RH510, RH-627, AR-2, AR-9, BH-118, BH-175, SLH-74, CIM-1100, CIM-598, and MM-58 were drought tolerant and ranked highest concerning stress condition. Moreover, correlation studies distinguished the relationship between relevant traits concerning drought tolerance.
期刊介绍:
The SABRAO Journal of Breeding and Genetics is an international journal of plant breeding and genetics research and was first published in 1969. It is the official publication of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO).
Its objectives are to: promote the international exchange of research information on plant breeding and genetics, by describing new research findings, or ideas of a basic or practical nature; and be a medium for the exchange of ideas and news regarding members of the Society.
The Journal gives priority to articles that are of direct relevance to plant breeders and with emphasis on the Asian region. Invited for publication are research articles, short communications, methods, reviews, commentaries, and opinion articles. Scientific contributions are refereed and edited to international standards.
The journal publishes articles for SABRAO members mainly. The Journal preferred strongly that at least one author should be a current member of the Society. Non-members may also publish in the journal.