Sayan Mukherjee, A. K. Choudhary, G. S. Sivakumar Babu
{"title":"加筋土中倾斜锚杆的三维分析","authors":"Sayan Mukherjee, A. K. Choudhary, G. S. Sivakumar Babu","doi":"10.1680/jgein.22.00318","DOIUrl":null,"url":null,"abstract":"Inclined anchors are used in civil engineering structures where the foundations are expected to resist pullout forces during their operational period. This paper presents a three-dimensional numerical analysis of inclined anchors placed in unreinforced and reinforced sand. The influence of several parameters on the response of inclined anchor plates has been investigated in this study. Results indicate that geogrid reinforcement placed on top of the anchor plate significantly influences the anchor plate's performance. The ultimate pullout capacity is found to increase with the inclination angle (varied from 30° to 60°) of the anchor plate both in unreinforced and reinforced sand. The anchor capacity is also affected by other parameters such as friction angle of sand (varied from 35° to 45°), embedment depth of the anchor plate (varied from 2 to 10) and tensile stiffness of the geogrid. Besides, the comparison between piles and anchors has been presented with the help of an illustrative example of a transmission tower foundation. The design calculations indicate that inclined anchors placed in reinforced sand can lead to economical design at shallow depth as compared to piles.","PeriodicalId":12616,"journal":{"name":"Geosynthetics International","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2022-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Three-dimensional Analysis of Inclined Anchors in Reinforced Sand\",\"authors\":\"Sayan Mukherjee, A. K. Choudhary, G. S. Sivakumar Babu\",\"doi\":\"10.1680/jgein.22.00318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inclined anchors are used in civil engineering structures where the foundations are expected to resist pullout forces during their operational period. This paper presents a three-dimensional numerical analysis of inclined anchors placed in unreinforced and reinforced sand. The influence of several parameters on the response of inclined anchor plates has been investigated in this study. Results indicate that geogrid reinforcement placed on top of the anchor plate significantly influences the anchor plate's performance. The ultimate pullout capacity is found to increase with the inclination angle (varied from 30° to 60°) of the anchor plate both in unreinforced and reinforced sand. The anchor capacity is also affected by other parameters such as friction angle of sand (varied from 35° to 45°), embedment depth of the anchor plate (varied from 2 to 10) and tensile stiffness of the geogrid. Besides, the comparison between piles and anchors has been presented with the help of an illustrative example of a transmission tower foundation. The design calculations indicate that inclined anchors placed in reinforced sand can lead to economical design at shallow depth as compared to piles.\",\"PeriodicalId\":12616,\"journal\":{\"name\":\"Geosynthetics International\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2022-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosynthetics International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1680/jgein.22.00318\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosynthetics International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1680/jgein.22.00318","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Three-dimensional Analysis of Inclined Anchors in Reinforced Sand
Inclined anchors are used in civil engineering structures where the foundations are expected to resist pullout forces during their operational period. This paper presents a three-dimensional numerical analysis of inclined anchors placed in unreinforced and reinforced sand. The influence of several parameters on the response of inclined anchor plates has been investigated in this study. Results indicate that geogrid reinforcement placed on top of the anchor plate significantly influences the anchor plate's performance. The ultimate pullout capacity is found to increase with the inclination angle (varied from 30° to 60°) of the anchor plate both in unreinforced and reinforced sand. The anchor capacity is also affected by other parameters such as friction angle of sand (varied from 35° to 45°), embedment depth of the anchor plate (varied from 2 to 10) and tensile stiffness of the geogrid. Besides, the comparison between piles and anchors has been presented with the help of an illustrative example of a transmission tower foundation. The design calculations indicate that inclined anchors placed in reinforced sand can lead to economical design at shallow depth as compared to piles.
期刊介绍:
An online only, rapid publication journal, Geosynthetics International – an official journal of the International Geosynthetics Society (IGS) – publishes the best information on current geosynthetics technology in research, design innovation, new materials and construction practice.
Topics covered
The whole of geosynthetic materials (including natural fibre products) such as research, behaviour, performance analysis, testing, design, construction methods, case histories and field experience. Geosynthetics International is received by all members of the IGS as part of their membership, and is published in e-only format six times a year.