{"title":"半参数空间自回归模型的变量自动选择","authors":"Fang Lu, Sisheng Liu, Jing Yang, Xuewen Lu","doi":"10.1080/07474938.2023.2225947","DOIUrl":null,"url":null,"abstract":"Abstract This article studies the generalized method of moment estimation of semiparametric varying coefficient partially linear spatial autoregressive model. The technique of profile least squares is employed and all estimators have explicit formulas which are computationally convenient. We derive the limiting distributions of the proposed estimators for both parametric and non parametric components. Variable selection procedures based on smooth-threshold estimating equations are proposed to automatically eliminate irrelevant parameters and zero varying coefficient functions. Compared to the alternative approaches based on shrinkage penalty, the new method is easily implemented. Oracle properties of the resulting estimators are established. Large amounts of Monte Carlo simulations confirm our theories and demonstrate that the estimators perform reasonably well in finite samples. We also apply the novel methods to an empirical data analysis.","PeriodicalId":11438,"journal":{"name":"Econometric Reviews","volume":"42 1","pages":"655 - 675"},"PeriodicalIF":0.8000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic variable selection for semiparametric spatial autoregressive model\",\"authors\":\"Fang Lu, Sisheng Liu, Jing Yang, Xuewen Lu\",\"doi\":\"10.1080/07474938.2023.2225947\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This article studies the generalized method of moment estimation of semiparametric varying coefficient partially linear spatial autoregressive model. The technique of profile least squares is employed and all estimators have explicit formulas which are computationally convenient. We derive the limiting distributions of the proposed estimators for both parametric and non parametric components. Variable selection procedures based on smooth-threshold estimating equations are proposed to automatically eliminate irrelevant parameters and zero varying coefficient functions. Compared to the alternative approaches based on shrinkage penalty, the new method is easily implemented. Oracle properties of the resulting estimators are established. Large amounts of Monte Carlo simulations confirm our theories and demonstrate that the estimators perform reasonably well in finite samples. We also apply the novel methods to an empirical data analysis.\",\"PeriodicalId\":11438,\"journal\":{\"name\":\"Econometric Reviews\",\"volume\":\"42 1\",\"pages\":\"655 - 675\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Econometric Reviews\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/07474938.2023.2225947\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Reviews","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/07474938.2023.2225947","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
Automatic variable selection for semiparametric spatial autoregressive model
Abstract This article studies the generalized method of moment estimation of semiparametric varying coefficient partially linear spatial autoregressive model. The technique of profile least squares is employed and all estimators have explicit formulas which are computationally convenient. We derive the limiting distributions of the proposed estimators for both parametric and non parametric components. Variable selection procedures based on smooth-threshold estimating equations are proposed to automatically eliminate irrelevant parameters and zero varying coefficient functions. Compared to the alternative approaches based on shrinkage penalty, the new method is easily implemented. Oracle properties of the resulting estimators are established. Large amounts of Monte Carlo simulations confirm our theories and demonstrate that the estimators perform reasonably well in finite samples. We also apply the novel methods to an empirical data analysis.
期刊介绍:
Econometric Reviews is widely regarded as one of the top 5 core journals in econometrics. It probes the limits of econometric knowledge, featuring regular, state-of-the-art single blind refereed articles and book reviews. ER has been consistently the leader and innovator in its acclaimed retrospective and critical surveys and interchanges on current or developing topics. Special issues of the journal are developed by a world-renowned editorial board. These bring together leading experts from econometrics and beyond. Reviews of books and software are also within the scope of the journal. Its content is expressly intended to reach beyond econometrics and advanced empirical economics, to statistics and other social sciences.