Sunil Gurrapu, K. Hodder, D. Sauchyn, Jeannine‐Marie St. Jacques
{"title":"标准化降水蒸发蒸腾指数(SPEI)模拟加拿大西部流域历史径流的能力评估","authors":"Sunil Gurrapu, K. Hodder, D. Sauchyn, Jeannine‐Marie St. Jacques","doi":"10.1080/07011784.2021.1896390","DOIUrl":null,"url":null,"abstract":"Abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean = 0.46) than monthly variability (mean = 0.30 over March–October). Summer and fall streamflow variability was better captured (mean = 0.42 over June–September) than spring variability (mean = 0.15 over March–April).","PeriodicalId":55278,"journal":{"name":"Canadian Water Resources Journal","volume":"46 1","pages":"52 - 72"},"PeriodicalIF":1.7000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2021.1896390","citationCount":"3","resultStr":"{\"title\":\"Assessment of the ability of the standardized precipitation evapotranspiration index (SPEI) to model historical streamflow in watersheds of Western Canada\",\"authors\":\"Sunil Gurrapu, K. Hodder, D. Sauchyn, Jeannine‐Marie St. Jacques\",\"doi\":\"10.1080/07011784.2021.1896390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean = 0.46) than monthly variability (mean = 0.30 over March–October). Summer and fall streamflow variability was better captured (mean = 0.42 over June–September) than spring variability (mean = 0.15 over March–April).\",\"PeriodicalId\":55278,\"journal\":{\"name\":\"Canadian Water Resources Journal\",\"volume\":\"46 1\",\"pages\":\"52 - 72\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/07011784.2021.1896390\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Water Resources Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/07011784.2021.1896390\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Water Resources Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2021.1896390","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Assessment of the ability of the standardized precipitation evapotranspiration index (SPEI) to model historical streamflow in watersheds of Western Canada
Abstract Knowledge of present-day spatial and temporal distribution of water resources is vital for successful water management and policies for planned adaptation to climate change. Measured quantities of hydroclimatic variables, including precipitation, evapotranspiration, streamflow, etc., are the primary indicators of water availability, and indices derived using several such primary variables provide a means to express water availability across a range of spatio-temporal scales. In this study, the ability of one such multi-scalar index, the Standardized Precipitation Evapotranspiration Index (SPEI), computed at a range of time scales, was examined to see how well it could model historically observed warm season monthly and annual streamflow in 24 natural-flowing watersheds of western Canada. The empirical relationships between the SPEI, computed at 1-, 3-, 6-, 9-, 12- and 24-month time scales, and monthly and annual streamflow were analyzed, showing significant correlations for all watersheds. The time scale of the SPEI with the strongest correlations varied seasonally. Based on these results, SPEI-based principal component regression (PCR) equations were calculated to model warm season monthly and annual historical streamflow. These PCR equations are able to adequately capture historical streamflow in these watersheds. Annual streamflow variability was better captured (mean = 0.46) than monthly variability (mean = 0.30 over March–October). Summer and fall streamflow variability was better captured (mean = 0.42 over June–September) than spring variability (mean = 0.15 over March–April).
期刊介绍:
The Canadian Water Resources Journal accepts manuscripts in English or French and publishes abstracts in both official languages. Preference is given to manuscripts focusing on science and policy aspects of Canadian water management. Specifically, manuscripts should stimulate public awareness and understanding of Canada''s water resources, encourage recognition of the high priority of water as a resource, and provide new or increased knowledge on some aspect of Canada''s water.
The Canadian Water Resources Journal was first published in the fall of 1976 and it has grown in stature to be recognized as a quality and important publication in the water resources field.