{"title":"人工智能与水文地貌动力学模型耦合的海岸预测","authors":"Pavitra Kumar, N. Leonardi","doi":"10.1080/21664250.2023.2233724","DOIUrl":null,"url":null,"abstract":"ABSTRACT As climate-driven risks for the world’s coastlines increase, understanding and predicting morphological changes as well as developing efficient systems for coastal forecast has become of the foremost importance for adaptation to climate change. Artificial Intelligence is a powerful technology that has been rapidly evolving recently and can offer new means of analysis for the coastal science field. Yet, the potential of these technologies for coastal geomorphology remains relatively unexplored with respect to other scientific fields. This article investigates the use of Artificial Neural Networks and Bayesian Networks in combination with fully coupled hydrodynamics and morphological models (Delft3D) for predicting morphological changes and sediment transport along coastal systems. Two sets of Artificial Intelligence models were tested, one set relying on localized modeling outputs or localized data sources and another set having reduced dependency from modeling outputs and, once trained, solely relying on boundary conditions and coastline geometry. The first set of models provides regression values greater than 0.95 and 0.86 for training and testing, respectively. The second set of reduced dependency models provides regression values greater than 0.84 and 0.76 for training and testing, respectively. Our results highlight the potential of AI and statistical models for coastal applications.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coastal forecast through coupling of Artificial Intelligence and hydro-morphodynamical modelling\",\"authors\":\"Pavitra Kumar, N. Leonardi\",\"doi\":\"10.1080/21664250.2023.2233724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT As climate-driven risks for the world’s coastlines increase, understanding and predicting morphological changes as well as developing efficient systems for coastal forecast has become of the foremost importance for adaptation to climate change. Artificial Intelligence is a powerful technology that has been rapidly evolving recently and can offer new means of analysis for the coastal science field. Yet, the potential of these technologies for coastal geomorphology remains relatively unexplored with respect to other scientific fields. This article investigates the use of Artificial Neural Networks and Bayesian Networks in combination with fully coupled hydrodynamics and morphological models (Delft3D) for predicting morphological changes and sediment transport along coastal systems. Two sets of Artificial Intelligence models were tested, one set relying on localized modeling outputs or localized data sources and another set having reduced dependency from modeling outputs and, once trained, solely relying on boundary conditions and coastline geometry. The first set of models provides regression values greater than 0.95 and 0.86 for training and testing, respectively. The second set of reduced dependency models provides regression values greater than 0.84 and 0.76 for training and testing, respectively. Our results highlight the potential of AI and statistical models for coastal applications.\",\"PeriodicalId\":50673,\"journal\":{\"name\":\"Coastal Engineering Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21664250.2023.2233724\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2233724","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Coastal forecast through coupling of Artificial Intelligence and hydro-morphodynamical modelling
ABSTRACT As climate-driven risks for the world’s coastlines increase, understanding and predicting morphological changes as well as developing efficient systems for coastal forecast has become of the foremost importance for adaptation to climate change. Artificial Intelligence is a powerful technology that has been rapidly evolving recently and can offer new means of analysis for the coastal science field. Yet, the potential of these technologies for coastal geomorphology remains relatively unexplored with respect to other scientific fields. This article investigates the use of Artificial Neural Networks and Bayesian Networks in combination with fully coupled hydrodynamics and morphological models (Delft3D) for predicting morphological changes and sediment transport along coastal systems. Two sets of Artificial Intelligence models were tested, one set relying on localized modeling outputs or localized data sources and another set having reduced dependency from modeling outputs and, once trained, solely relying on boundary conditions and coastline geometry. The first set of models provides regression values greater than 0.95 and 0.86 for training and testing, respectively. The second set of reduced dependency models provides regression values greater than 0.84 and 0.76 for training and testing, respectively. Our results highlight the potential of AI and statistical models for coastal applications.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.