废旧锂离子电池与光伏技术在净零电量住宅中的集成研究

IF 2.1 4区 工程技术 Q3 ENERGY & FUELS Journal of Solar Energy Engineering-transactions of The Asme Pub Date : 2022-09-08 DOI:10.1115/1.4055554
Muapper Alhadri, Waleed Zakri, Siamak Farhad
{"title":"废旧锂离子电池与光伏技术在净零电量住宅中的集成研究","authors":"Muapper Alhadri, Waleed Zakri, Siamak Farhad","doi":"10.1115/1.4055554","DOIUrl":null,"url":null,"abstract":"\n The behavior of a retired lithium-ion battery (LIB) from its first-life in an electric aircraft (EA) for its second-life in a solar photovoltaic (PV) system for a net-zero electricity residential home is studied. The first part of this study presents the design and sizing a battery energy storage system (BESS), made from retired LIBs, to store a portion of the PV generation for a typical home in Ohio. The home is connected to the grid, but the net electricity usage from the grid in one year is zero. The purpose of the BESS is to peak shaving, power arbitrage, reducing the home dependency to grid, and increasing the economic benefits. The sizing is determined based on the hourly data of the PV system generation, ambient temperature, irradiation, and home demand electricity. In the second part of this study, the retired LIB degradation rate and its remaining useful life in the BESS are estimated using an adopted empirical LIB model. The model includes the capacity-fade for both first-life and second-life of the LIB under various duty cycles. It is shown that the retired LIB from its first-life is still suitable to be used in the PV grid-tied battery (PVGB) system for another 10 years. The results of this study can potentially reduce the LIB cost for EVs and EAs because the retired LIBs from these applications still have value to serve for other applications such as PVGB system for residential homes.","PeriodicalId":17124,"journal":{"name":"Journal of Solar Energy Engineering-transactions of The Asme","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Study on Integration of Retired Lithium-Ion Battery with Photovoltaic for Net-Zero Electricity Residential Homes\",\"authors\":\"Muapper Alhadri, Waleed Zakri, Siamak Farhad\",\"doi\":\"10.1115/1.4055554\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The behavior of a retired lithium-ion battery (LIB) from its first-life in an electric aircraft (EA) for its second-life in a solar photovoltaic (PV) system for a net-zero electricity residential home is studied. The first part of this study presents the design and sizing a battery energy storage system (BESS), made from retired LIBs, to store a portion of the PV generation for a typical home in Ohio. The home is connected to the grid, but the net electricity usage from the grid in one year is zero. The purpose of the BESS is to peak shaving, power arbitrage, reducing the home dependency to grid, and increasing the economic benefits. The sizing is determined based on the hourly data of the PV system generation, ambient temperature, irradiation, and home demand electricity. In the second part of this study, the retired LIB degradation rate and its remaining useful life in the BESS are estimated using an adopted empirical LIB model. The model includes the capacity-fade for both first-life and second-life of the LIB under various duty cycles. It is shown that the retired LIB from its first-life is still suitable to be used in the PV grid-tied battery (PVGB) system for another 10 years. The results of this study can potentially reduce the LIB cost for EVs and EAs because the retired LIBs from these applications still have value to serve for other applications such as PVGB system for residential homes.\",\"PeriodicalId\":17124,\"journal\":{\"name\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2022-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solar Energy Engineering-transactions of The Asme\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4055554\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solar Energy Engineering-transactions of The Asme","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4055554","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 4

摘要

研究了一种退役的锂离子电池(LIB)从其在电动飞机(EA)中的第一个寿命到其在净零电量住宅的太阳能光伏(PV)系统中的第二个寿命的行为。本研究的第一部分介绍了电池储能系统(BESS)的设计和尺寸,该系统由退役的LIBs制成,用于存储俄亥俄州典型家庭的部分光伏发电量。家里已经接入了电网,但一年内电网的净用电量为零。BESS的目的是调峰、套利、减少家庭对电网的依赖,并提高经济效益。根据光伏系统发电量、环境温度、辐射和家庭需求电力的小时数据确定规模。在本研究的第二部分中,使用采用的经验LIB模型估计了BESS中的退役LIB降解率及其剩余使用寿命。该模型包括LIB在不同工作循环下的第一寿命和第二寿命的容量衰减。研究表明,从其第一个寿命开始退役的LIB仍然适合在光伏并网电池(PVGB)系统中再使用10年。这项研究的结果可能会降低电动汽车和电动汽车的LIB成本,因为这些应用中退役的LIB仍有价值用于其他应用,如住宅PVGB系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on Integration of Retired Lithium-Ion Battery with Photovoltaic for Net-Zero Electricity Residential Homes
The behavior of a retired lithium-ion battery (LIB) from its first-life in an electric aircraft (EA) for its second-life in a solar photovoltaic (PV) system for a net-zero electricity residential home is studied. The first part of this study presents the design and sizing a battery energy storage system (BESS), made from retired LIBs, to store a portion of the PV generation for a typical home in Ohio. The home is connected to the grid, but the net electricity usage from the grid in one year is zero. The purpose of the BESS is to peak shaving, power arbitrage, reducing the home dependency to grid, and increasing the economic benefits. The sizing is determined based on the hourly data of the PV system generation, ambient temperature, irradiation, and home demand electricity. In the second part of this study, the retired LIB degradation rate and its remaining useful life in the BESS are estimated using an adopted empirical LIB model. The model includes the capacity-fade for both first-life and second-life of the LIB under various duty cycles. It is shown that the retired LIB from its first-life is still suitable to be used in the PV grid-tied battery (PVGB) system for another 10 years. The results of this study can potentially reduce the LIB cost for EVs and EAs because the retired LIBs from these applications still have value to serve for other applications such as PVGB system for residential homes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
26.10%
发文量
98
审稿时长
6.0 months
期刊介绍: The Journal of Solar Energy Engineering - Including Wind Energy and Building Energy Conservation - publishes research papers that contain original work of permanent interest in all areas of solar energy and energy conservation, as well as discussions of policy and regulatory issues that affect renewable energy technologies and their implementation. Papers that do not include original work, but nonetheless present quality analysis or incremental improvements to past work may be published as Technical Briefs. Review papers are accepted but should be discussed with the Editor prior to submission. The Journal also publishes a section called Solar Scenery that features photographs or graphical displays of significant new installations or research facilities.
期刊最新文献
Experimental Analysis of a Solar Air Heater Featuring Multiple Spiral-Shaped Semi-Conical Ribs Granular flow in novel Octet shape-based lattice frame material Design and Performance Evaluation of a Novel Solar Dryer for Drying Potatoes in the Eastern Algerian Sahara Thermal and Electrical Analysis of Organometallic Halide Solar Cells Condensation Heat Transfer Experiments of R410A and R32 in Horizontal Smooth and Enhanced Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1