北纬和中纬度森林地表植物释放的挥发性有机化合物

IF 3 4区 地球科学 Q2 ENVIRONMENTAL SCIENCES Journal of Atmospheric Chemistry Pub Date : 2022-03-15 DOI:10.1007/s10874-022-09434-3
Valery A. Isidorov, Ewa Pirożnikow, Viktoria L. Spirina, Alexander N. Vasyanin, Svetlana A. Kulakova, Irina F. Abdulmanova, Andrei A. Zaitsev
{"title":"北纬和中纬度森林地表植物释放的挥发性有机化合物","authors":"Valery A. Isidorov,&nbsp;Ewa Pirożnikow,&nbsp;Viktoria L. Spirina,&nbsp;Alexander N. Vasyanin,&nbsp;Svetlana A. Kulakova,&nbsp;Irina F. Abdulmanova,&nbsp;Andrei A. Zaitsev","doi":"10.1007/s10874-022-09434-3","DOIUrl":null,"url":null,"abstract":"<div><p>The forests of the boreal and mid-latitude zones of the Northern Hemisphere are the largest source of reactive volatile organic compounds (VOCs), which have an important impact on the processes occurring in the atmospheric boundary layer. However, the composition of biogenic emissions from them remains incompletely characterized, as evidenced by the significant excess OH radical concentrations predicted by models in comparison with those observed under the forest canopy. The missing OH sink in the models may be related to the fact that they do not take into account the emission of highly reactive VOCs by vegetation on the forest floor. In this work, we report the results of laboratory determinations of the composition of VOCs emitted by representatives of different groups of plants that form the living soil cover (LSC) in the forests of the boreal and mid-latitude zones: bryophytes, small shrubs, herbaceous plants, and ferns. In the chromatograms of volatile emissions of all 11 studied plant species, 254 compounds with carbon atoms ranging in number from two to 20 were registered. All plants were characterized by the emission of terpenes, accounting for 112 compounds, and the second largest group (35 substances) was formed by carbonyl compounds. Both groups of compounds are characterized by high reactivity and are easily included in the processes of gas-phase oxidation with the participation of radicals HO, NO<sub>3</sub> and ozone. These data indicate the importance of a thorough study of the so far disregarded source of VOCs, that is, the LSC in forests.</p></div>","PeriodicalId":611,"journal":{"name":"Journal of Atmospheric Chemistry","volume":"79 3","pages":"153 - 166"},"PeriodicalIF":3.0000,"publicationDate":"2022-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10874-022-09434-3.pdf","citationCount":"4","resultStr":"{\"title\":\"Emission of volatile organic compounds by plants on the floor of boreal and mid-latitude forests\",\"authors\":\"Valery A. Isidorov,&nbsp;Ewa Pirożnikow,&nbsp;Viktoria L. Spirina,&nbsp;Alexander N. Vasyanin,&nbsp;Svetlana A. Kulakova,&nbsp;Irina F. Abdulmanova,&nbsp;Andrei A. Zaitsev\",\"doi\":\"10.1007/s10874-022-09434-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The forests of the boreal and mid-latitude zones of the Northern Hemisphere are the largest source of reactive volatile organic compounds (VOCs), which have an important impact on the processes occurring in the atmospheric boundary layer. However, the composition of biogenic emissions from them remains incompletely characterized, as evidenced by the significant excess OH radical concentrations predicted by models in comparison with those observed under the forest canopy. The missing OH sink in the models may be related to the fact that they do not take into account the emission of highly reactive VOCs by vegetation on the forest floor. In this work, we report the results of laboratory determinations of the composition of VOCs emitted by representatives of different groups of plants that form the living soil cover (LSC) in the forests of the boreal and mid-latitude zones: bryophytes, small shrubs, herbaceous plants, and ferns. In the chromatograms of volatile emissions of all 11 studied plant species, 254 compounds with carbon atoms ranging in number from two to 20 were registered. All plants were characterized by the emission of terpenes, accounting for 112 compounds, and the second largest group (35 substances) was formed by carbonyl compounds. Both groups of compounds are characterized by high reactivity and are easily included in the processes of gas-phase oxidation with the participation of radicals HO, NO<sub>3</sub> and ozone. These data indicate the importance of a thorough study of the so far disregarded source of VOCs, that is, the LSC in forests.</p></div>\",\"PeriodicalId\":611,\"journal\":{\"name\":\"Journal of Atmospheric Chemistry\",\"volume\":\"79 3\",\"pages\":\"153 - 166\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2022-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10874-022-09434-3.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric Chemistry\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10874-022-09434-3\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric Chemistry","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10874-022-09434-3","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 4

摘要

北半球寒带和中纬度地区的森林是活性挥发性有机化合物(VOCs)的最大来源,对大气边界层的过程有重要影响。然而,它们的生物源排放物的组成仍然没有完全表征,正如模型预测的OH自由基浓度与在森林冠层下观察到的浓度相比显著过剩所证明的那样。模型中缺失的OH汇可能与它们没有考虑到森林地面植被排放的高活性挥发性有机化合物有关。在这项工作中,我们报告了在北纬和中纬度地区的森林中形成活土壤覆盖(LSC)的不同植物群的代表所排放的挥发性有机化合物的实验室测定结果:苔藓植物,小灌木,草本植物和蕨类植物。在所研究的11种植物的挥发性排放物的色谱图中,记录了254种碳原子数从2到20的化合物。所有植物都以萜烯类化合物为特征,共有112种化合物,其次是羰基化合物(35种物质)。这两类化合物都具有较高的反应活性,容易在自由基HO、NO3和臭氧的参与下发生气相氧化。这些数据表明,对迄今为止被忽视的挥发性有机化合物来源,即森林中的挥发性有机化合物进行彻底研究的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emission of volatile organic compounds by plants on the floor of boreal and mid-latitude forests

The forests of the boreal and mid-latitude zones of the Northern Hemisphere are the largest source of reactive volatile organic compounds (VOCs), which have an important impact on the processes occurring in the atmospheric boundary layer. However, the composition of biogenic emissions from them remains incompletely characterized, as evidenced by the significant excess OH radical concentrations predicted by models in comparison with those observed under the forest canopy. The missing OH sink in the models may be related to the fact that they do not take into account the emission of highly reactive VOCs by vegetation on the forest floor. In this work, we report the results of laboratory determinations of the composition of VOCs emitted by representatives of different groups of plants that form the living soil cover (LSC) in the forests of the boreal and mid-latitude zones: bryophytes, small shrubs, herbaceous plants, and ferns. In the chromatograms of volatile emissions of all 11 studied plant species, 254 compounds with carbon atoms ranging in number from two to 20 were registered. All plants were characterized by the emission of terpenes, accounting for 112 compounds, and the second largest group (35 substances) was formed by carbonyl compounds. Both groups of compounds are characterized by high reactivity and are easily included in the processes of gas-phase oxidation with the participation of radicals HO, NO3 and ozone. These data indicate the importance of a thorough study of the so far disregarded source of VOCs, that is, the LSC in forests.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Atmospheric Chemistry
Journal of Atmospheric Chemistry 地学-环境科学
CiteScore
4.60
自引率
5.00%
发文量
16
审稿时长
7.5 months
期刊介绍: The Journal of Atmospheric Chemistry is devoted to the study of the chemistry of the Earth''s atmosphere, the emphasis being laid on the region below about 100 km. The strongly interdisciplinary nature of atmospheric chemistry means that it embraces a great variety of sciences, but the journal concentrates on the following topics: Observational, interpretative and modelling studies of the composition of air and precipitation and the physiochemical processes in the Earth''s atmosphere, excluding air pollution problems of local importance only. The role of the atmosphere in biogeochemical cycles; the chemical interaction of the oceans, land surface and biosphere with the atmosphere. Laboratory studies of the mechanics in homogeneous and heterogeneous transformation processes in the atmosphere. Descriptions of major advances in instrumentation developed for the measurement of atmospheric composition and chemical properties.
期刊最新文献
Association between time of day and carbonaceous PM2.5 and oxidative potential in summer and winter in the Suncheon industrial area, Republic of Korea PM2.5 and PM10-related carcinogenic and non-carcinogenic risk assessment in Iran Characteristics of surface air quality over provincial capital cities in Northwestern China during 2013–2020 Stable isotopic, bulk, and molecular compositions of post-monsoon biomass-burning aerosols in Delhi suggest photochemical ageing during regional transport is more pronounced than local processing A review on sequential extraction of metals bound particulate matter and their health risk assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1