网络中的价格稳定模型

Jun Kiniwa, K. Kikuta, H. Sandoh
{"title":"网络中的价格稳定模型","authors":"Jun Kiniwa, K. Kikuta, H. Sandoh","doi":"10.15807/JORSJ.60.479","DOIUrl":null,"url":null,"abstract":"We consider a multiagent network model consisting of nodes and edges as cities and their links to neighbors, respectively. Each network node has an agent and priced goods and the agent can buy or sell goods in the neighborhood. Though every node may not have an equal price, we show the prices will reach an equilibrium by iterating buy and sell operations. First, we present a protocol model in which each buying agent makes a bid to the lowest priced goods in the neighborhood; and each selling agent selects the highest bid, if any. Second, we derive a sufficient condition which stabilizes price in our model. We also show the equilibrium price can be derived from the total funds and the total goods for any network. This is a special case of the Fisher’s quantity equation, thus we can confirm the correctness of our model. We then examine the best bidding strategy is available to our protocol. Third, we analyze stabilization time for path and cycle networks. Finally, we perform simulation experiments for estimating the stabilization time, the number of bidders and the effects of spreading funds. Our model is suitable for investigating the effects of network topologies on price stabilization.","PeriodicalId":51107,"journal":{"name":"Journal of the Operations Research Society of Japan","volume":"60 1","pages":"479-495"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15807/JORSJ.60.479","citationCount":"2","resultStr":"{\"title\":\"A PRICE STABILIZATION MODEL IN NETWORKS\",\"authors\":\"Jun Kiniwa, K. Kikuta, H. Sandoh\",\"doi\":\"10.15807/JORSJ.60.479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a multiagent network model consisting of nodes and edges as cities and their links to neighbors, respectively. Each network node has an agent and priced goods and the agent can buy or sell goods in the neighborhood. Though every node may not have an equal price, we show the prices will reach an equilibrium by iterating buy and sell operations. First, we present a protocol model in which each buying agent makes a bid to the lowest priced goods in the neighborhood; and each selling agent selects the highest bid, if any. Second, we derive a sufficient condition which stabilizes price in our model. We also show the equilibrium price can be derived from the total funds and the total goods for any network. This is a special case of the Fisher’s quantity equation, thus we can confirm the correctness of our model. We then examine the best bidding strategy is available to our protocol. Third, we analyze stabilization time for path and cycle networks. Finally, we perform simulation experiments for estimating the stabilization time, the number of bidders and the effects of spreading funds. Our model is suitable for investigating the effects of network topologies on price stabilization.\",\"PeriodicalId\":51107,\"journal\":{\"name\":\"Journal of the Operations Research Society of Japan\",\"volume\":\"60 1\",\"pages\":\"479-495\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15807/JORSJ.60.479\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Operations Research Society of Japan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15807/JORSJ.60.479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Operations Research Society of Japan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15807/JORSJ.60.479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了一个多智能体网络模型,该模型由分别作为城市的节点和边缘以及它们与邻居的链接组成。每个网络节点都有一个代理和定价商品,代理可以在附近购买或销售商品。虽然每个节点可能没有相等的价格,但我们通过反复的买入和卖出操作表明价格将达到均衡。首先,我们提出了一个协议模型,在该模型中,每个采购代理对附近价格最低的商品进行出价;并且每个销售代理选择最高出价(如果有的话)。其次,我们在模型中得到了稳定价格的一个充分条件。我们还证明了均衡价格可以从任何网络的总资金和总商品中得出。这是费雪量方程的一个特例,因此我们可以确认我们的模型的正确性。然后,我们检查可用于我们的协议的最佳投标策略。第三,我们分析了路径和循环网络的稳定时间。最后,我们进行了模拟实验,以估计稳定时间、投标人数量和分散资金的影响。我们的模型适用于研究网络拓扑结构对价格稳定的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A PRICE STABILIZATION MODEL IN NETWORKS
We consider a multiagent network model consisting of nodes and edges as cities and their links to neighbors, respectively. Each network node has an agent and priced goods and the agent can buy or sell goods in the neighborhood. Though every node may not have an equal price, we show the prices will reach an equilibrium by iterating buy and sell operations. First, we present a protocol model in which each buying agent makes a bid to the lowest priced goods in the neighborhood; and each selling agent selects the highest bid, if any. Second, we derive a sufficient condition which stabilizes price in our model. We also show the equilibrium price can be derived from the total funds and the total goods for any network. This is a special case of the Fisher’s quantity equation, thus we can confirm the correctness of our model. We then examine the best bidding strategy is available to our protocol. Third, we analyze stabilization time for path and cycle networks. Finally, we perform simulation experiments for estimating the stabilization time, the number of bidders and the effects of spreading funds. Our model is suitable for investigating the effects of network topologies on price stabilization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Operations Research Society of Japan
Journal of the Operations Research Society of Japan 管理科学-运筹学与管理科学
CiteScore
0.70
自引率
0.00%
发文量
12
审稿时长
12 months
期刊介绍: The journal publishes original work and quality reviews in the field of operations research and management science to OR practitioners and researchers in two substantive categories: operations research methods; applications and practices of operations research in industry, public sector, and all areas of science and engineering.
期刊最新文献
IMPLEMENTING ARROW–DEBREU EQUILIBRIA IN APPROXIMATELY COMPLETE SECURITY MARKETS A RIEMANNIAN-GEOMETRICAL APPROACH TO STRICTLY CONVEX QUADRATIC PROGRAMMING WITH CONVEXITY-PRESERVING METRIC PARAMETERIZATION A SUBGEOMETRIC CONVERGENCE FORMULA FOR TOTAL-VARIATION ERROR OF THE LEVEL-INCREMENT TRUNCATION APPROXIMATION OF M/G/1-TYPE MARKOV CHAINS MIXED-INTEGER DC PROGRAMMING BASED ALGORITHMS FOR THE CIRCULAR PACKING PROBLEM A HYBRID ALGORITHM FOR THE ADWORDS PROBLEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1