{"title":"利用高斯滤波器提出了一种新的基于区域的主动轮廓方法","authors":"Kazım Hanbay","doi":"10.53070/bbd.1038469","DOIUrl":null,"url":null,"abstract":"Aktif kontur yöntemleri görüntü bölütlemede sıklıkla kullanılmaktadır. Bu yöntemler kenar temelli ve bölge temelli yöntemler olarak ikiye ayrılabilir. Yöntemlerin her ikisi de nesne sınırlarını elde etmek için ham görüntü verisini kullanmaktadır. Önerilen yöntemler başlangıç kontur konumu, parametre bağımlılığı, gürültü duyarlılığı ve düzensiz görüntü yoğunlukları gibi bazı zorlu problemlere sahiptir. Bu çalışmada, orijinal ACM with SBGFRLS yönteminin α parametresinin otomatik olarak hesaplanmasını sağlayan yeni bir yaklaşım geliştirilmiştir. Bu parametre giriş görüntüsünün gauss türev filtreleri kullanılarak otomatik olarak hesaplanmıştır. Hesaplanan parametre düzey küme fonksiyonunda iteratif olarak kullanılmıştır. Deneysel sonuçlar, iyileştirilmiş ACM with SBGFRLS yönteminin daha yüksek bölütleme doğrulukları sağladığını göstermektedir.","PeriodicalId":41917,"journal":{"name":"Computer Science-AGH","volume":" ","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Region Based Active Contour Method Developed Using Gauss Filters\",\"authors\":\"Kazım Hanbay\",\"doi\":\"10.53070/bbd.1038469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aktif kontur yöntemleri görüntü bölütlemede sıklıkla kullanılmaktadır. Bu yöntemler kenar temelli ve bölge temelli yöntemler olarak ikiye ayrılabilir. Yöntemlerin her ikisi de nesne sınırlarını elde etmek için ham görüntü verisini kullanmaktadır. Önerilen yöntemler başlangıç kontur konumu, parametre bağımlılığı, gürültü duyarlılığı ve düzensiz görüntü yoğunlukları gibi bazı zorlu problemlere sahiptir. Bu çalışmada, orijinal ACM with SBGFRLS yönteminin α parametresinin otomatik olarak hesaplanmasını sağlayan yeni bir yaklaşım geliştirilmiştir. Bu parametre giriş görüntüsünün gauss türev filtreleri kullanılarak otomatik olarak hesaplanmıştır. Hesaplanan parametre düzey küme fonksiyonunda iteratif olarak kullanılmıştır. Deneysel sonuçlar, iyileştirilmiş ACM with SBGFRLS yönteminin daha yüksek bölütleme doğrulukları sağladığını göstermektedir.\",\"PeriodicalId\":41917,\"journal\":{\"name\":\"Computer Science-AGH\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science-AGH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53070/bbd.1038469\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science-AGH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53070/bbd.1038469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
A New Region Based Active Contour Method Developed Using Gauss Filters
Aktif kontur yöntemleri görüntü bölütlemede sıklıkla kullanılmaktadır. Bu yöntemler kenar temelli ve bölge temelli yöntemler olarak ikiye ayrılabilir. Yöntemlerin her ikisi de nesne sınırlarını elde etmek için ham görüntü verisini kullanmaktadır. Önerilen yöntemler başlangıç kontur konumu, parametre bağımlılığı, gürültü duyarlılığı ve düzensiz görüntü yoğunlukları gibi bazı zorlu problemlere sahiptir. Bu çalışmada, orijinal ACM with SBGFRLS yönteminin α parametresinin otomatik olarak hesaplanmasını sağlayan yeni bir yaklaşım geliştirilmiştir. Bu parametre giriş görüntüsünün gauss türev filtreleri kullanılarak otomatik olarak hesaplanmıştır. Hesaplanan parametre düzey küme fonksiyonunda iteratif olarak kullanılmıştır. Deneysel sonuçlar, iyileştirilmiş ACM with SBGFRLS yönteminin daha yüksek bölütleme doğrulukları sağladığını göstermektedir.