{"title":"通过AER基准问题验证VVER-1000全核稳态COMSOL多物理场","authors":"Ned Xoubi, A. Y. Soliman","doi":"10.1504/IJNEST.2018.10015407","DOIUrl":null,"url":null,"abstract":"In this work, a full core, three-dimensional, multi-group model of VVER-1000 reactor core is developed using specifications of the Schulz benchmark. This paper presents a new 3-D full core solution, and simulates the neutronic behaviour of the VVER-1000 reactor by predicting the system criticality, power distribution, and the neutron flux distribution. Multi-group constants are applied to the COMSOL model to perform neutronics calculations using finite element method with adaptive mesh refinement. The study found that the calculated effective multiplication factor (keff) compares well with the reference value. Furthermore, the fission rates 3D power distributions and axially averaged 2D power distribution are in good agreements with reported reference results. The thermal neutron spectrum is also calculated by the COMSOL model as presented in this paper. This study allows us to validate the COMSOL calculation schemes for VVER-type reactors and to compare our solutions with reference solutions at steady state.","PeriodicalId":35144,"journal":{"name":"International Journal of Nuclear Energy Science and Technology","volume":"12 1","pages":"161"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Validating COMSOL multiphysics for VVER-1000 whole-core-steady-state via AER benchmark problem\",\"authors\":\"Ned Xoubi, A. Y. Soliman\",\"doi\":\"10.1504/IJNEST.2018.10015407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a full core, three-dimensional, multi-group model of VVER-1000 reactor core is developed using specifications of the Schulz benchmark. This paper presents a new 3-D full core solution, and simulates the neutronic behaviour of the VVER-1000 reactor by predicting the system criticality, power distribution, and the neutron flux distribution. Multi-group constants are applied to the COMSOL model to perform neutronics calculations using finite element method with adaptive mesh refinement. The study found that the calculated effective multiplication factor (keff) compares well with the reference value. Furthermore, the fission rates 3D power distributions and axially averaged 2D power distribution are in good agreements with reported reference results. The thermal neutron spectrum is also calculated by the COMSOL model as presented in this paper. This study allows us to validate the COMSOL calculation schemes for VVER-type reactors and to compare our solutions with reference solutions at steady state.\",\"PeriodicalId\":35144,\"journal\":{\"name\":\"International Journal of Nuclear Energy Science and Technology\",\"volume\":\"12 1\",\"pages\":\"161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Nuclear Energy Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJNEST.2018.10015407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Nuclear Energy Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJNEST.2018.10015407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Energy","Score":null,"Total":0}
Validating COMSOL multiphysics for VVER-1000 whole-core-steady-state via AER benchmark problem
In this work, a full core, three-dimensional, multi-group model of VVER-1000 reactor core is developed using specifications of the Schulz benchmark. This paper presents a new 3-D full core solution, and simulates the neutronic behaviour of the VVER-1000 reactor by predicting the system criticality, power distribution, and the neutron flux distribution. Multi-group constants are applied to the COMSOL model to perform neutronics calculations using finite element method with adaptive mesh refinement. The study found that the calculated effective multiplication factor (keff) compares well with the reference value. Furthermore, the fission rates 3D power distributions and axially averaged 2D power distribution are in good agreements with reported reference results. The thermal neutron spectrum is also calculated by the COMSOL model as presented in this paper. This study allows us to validate the COMSOL calculation schemes for VVER-type reactors and to compare our solutions with reference solutions at steady state.
期刊介绍:
Today, nuclear reactors generate nearly one quarter of the electricity in nations representing two thirds of humanity, and other nuclear applications are integral to many aspects of the world economy. Nuclear fission remains an important option for meeting energy requirements and maintaining a balanced worldwide energy policy; with major countries expanding nuclear energy"s role and new countries poised to introduce it, the key issue is not whether the use of nuclear technology will grow worldwide, even if public opinion concerning safety, the economics of nuclear power, and waste disposal issues adversely affect the general acceptance of nuclear power, but whether it will grow fast enough to make a decisive contribution to the global imperative of sustainable development.