物联网中基于双DQN的动态信任推理算法

IF 7.5 2区 计算机科学 Q1 TELECOMMUNICATIONS Digital Communications and Networks Pub Date : 2024-08-01 DOI:10.1016/j.dcan.2022.12.010
{"title":"物联网中基于双DQN的动态信任推理算法","authors":"","doi":"10.1016/j.dcan.2022.12.010","DOIUrl":null,"url":null,"abstract":"<div><p>The development of the Internet of Things (IoT) has brought great convenience to people. However, some information security problems such as privacy leakage are caused by communicating with risky users. It is a challenge to choose reliable users with which to interact in the IoT. Therefore, trust plays a crucial role in the IoT because trust may avoid some risks. Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning. However, trust propagation is time-consuming, and trust changes with the interaction process in social networks. To track the dynamic changes in trust values, a dynamic trust inference algorithm named Dynamic Double DQN Trust (Dy-DDQNTrust) is proposed to predict the indirect trust values of two users without direct contact with each other. The proposed algorithm simulates the interactions among users by double DQN. Firstly, CurrentNet and TargetNet networks are used to select users for interaction. The users with high trust are chosen to interact in future iterations. Secondly, the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction. Finally, the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Average-based Similarity (SMCFAvg) aggregation strategy. Experiments are carried out on the FilmTrust and the Epinions datasets. Compared with TidalTrust, MoleTrust, DDQNTrust, DyTrust and Dynamic Weighted Heuristic trust path Search algorithm (DWHS), our dynamic trust inference algorithm has higher prediction accuracy and better scalability.</p></div>","PeriodicalId":48631,"journal":{"name":"Digital Communications and Networks","volume":null,"pages":null},"PeriodicalIF":7.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352864822002784/pdfft?md5=877c7e95575423a8e1eedc5ae6bcbe63&pid=1-s2.0-S2352864822002784-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A dynamic algorithm for trust inference based on double DQN in the internet of things\",\"authors\":\"\",\"doi\":\"10.1016/j.dcan.2022.12.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The development of the Internet of Things (IoT) has brought great convenience to people. However, some information security problems such as privacy leakage are caused by communicating with risky users. It is a challenge to choose reliable users with which to interact in the IoT. Therefore, trust plays a crucial role in the IoT because trust may avoid some risks. Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning. However, trust propagation is time-consuming, and trust changes with the interaction process in social networks. To track the dynamic changes in trust values, a dynamic trust inference algorithm named Dynamic Double DQN Trust (Dy-DDQNTrust) is proposed to predict the indirect trust values of two users without direct contact with each other. The proposed algorithm simulates the interactions among users by double DQN. Firstly, CurrentNet and TargetNet networks are used to select users for interaction. The users with high trust are chosen to interact in future iterations. Secondly, the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction. Finally, the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Average-based Similarity (SMCFAvg) aggregation strategy. Experiments are carried out on the FilmTrust and the Epinions datasets. Compared with TidalTrust, MoleTrust, DDQNTrust, DyTrust and Dynamic Weighted Heuristic trust path Search algorithm (DWHS), our dynamic trust inference algorithm has higher prediction accuracy and better scalability.</p></div>\",\"PeriodicalId\":48631,\"journal\":{\"name\":\"Digital Communications and Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002784/pdfft?md5=877c7e95575423a8e1eedc5ae6bcbe63&pid=1-s2.0-S2352864822002784-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Communications and Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352864822002784\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Communications and Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352864822002784","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

物联网(IoT)的发展给人们带来了极大的便利。然而,与有风险的用户通信会导致一些信息安全问题,如隐私泄露。在物联网中选择可靠的用户进行交互是一项挑战。因此,信任在物联网中起着至关重要的作用,因为信任可以避免一些风险。代理通常会基于强化学习选择高信任度的可靠用户,以实现自身利益最大化。然而,信任传播非常耗时,而且信任会随着社交网络中的交互过程而变化。为了跟踪信任值的动态变化,本文提出了一种名为 "动态双 DQN 信任(Dy-DDQNTrust)"的动态信任推断算法,用于预测两个没有直接接触的用户的间接信任值。该算法通过双 DQN 模拟用户之间的交互。首先,使用 CurrentNet 和 TargetNet 网络选择互动用户。信任度高的用户会被选中在未来的迭代中进行交互。其次,根据交互结果动态更新信任值,直到找到可靠的信任路径。最后,通过基于平均相似度的修正协同过滤聚合策略(SMCFAvg)聚合多个用户的意见,推断出间接用户之间的信任值。实验在 FilmTrust 和 Epinions 数据集上进行。与 TidalTrust、MoleTrust、DDQNTrust、DyTrust 和动态加权启发式信任路径搜索算法(DWHS)相比,我们的动态信任推理算法具有更高的预测精度和更好的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A dynamic algorithm for trust inference based on double DQN in the internet of things

The development of the Internet of Things (IoT) has brought great convenience to people. However, some information security problems such as privacy leakage are caused by communicating with risky users. It is a challenge to choose reliable users with which to interact in the IoT. Therefore, trust plays a crucial role in the IoT because trust may avoid some risks. Agents usually choose reliable users with high trust to maximize their own interests based on reinforcement learning. However, trust propagation is time-consuming, and trust changes with the interaction process in social networks. To track the dynamic changes in trust values, a dynamic trust inference algorithm named Dynamic Double DQN Trust (Dy-DDQNTrust) is proposed to predict the indirect trust values of two users without direct contact with each other. The proposed algorithm simulates the interactions among users by double DQN. Firstly, CurrentNet and TargetNet networks are used to select users for interaction. The users with high trust are chosen to interact in future iterations. Secondly, the trust value is updated dynamically until a reliable trust path is found according to the result of the interaction. Finally, the trust value between indirect users is inferred by aggregating the opinions from multiple users through a Modified Collaborative Filtering Average-based Similarity (SMCFAvg) aggregation strategy. Experiments are carried out on the FilmTrust and the Epinions datasets. Compared with TidalTrust, MoleTrust, DDQNTrust, DyTrust and Dynamic Weighted Heuristic trust path Search algorithm (DWHS), our dynamic trust inference algorithm has higher prediction accuracy and better scalability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Digital Communications and Networks
Digital Communications and Networks Computer Science-Hardware and Architecture
CiteScore
12.80
自引率
5.10%
发文量
915
审稿时长
30 weeks
期刊介绍: Digital Communications and Networks is a prestigious journal that emphasizes on communication systems and networks. We publish only top-notch original articles and authoritative reviews, which undergo rigorous peer-review. We are proud to announce that all our articles are fully Open Access and can be accessed on ScienceDirect. Our journal is recognized and indexed by eminent databases such as the Science Citation Index Expanded (SCIE) and Scopus. In addition to regular articles, we may also consider exceptional conference papers that have been significantly expanded. Furthermore, we periodically release special issues that focus on specific aspects of the field. In conclusion, Digital Communications and Networks is a leading journal that guarantees exceptional quality and accessibility for researchers and scholars in the field of communication systems and networks.
期刊最新文献
Editorial Board Scheduling optimization for UAV communication coverage using virtual force-based PSO model Hybrid millimeter wave heterogeneous networks with spatially correlated user equipment A novel hybrid authentication protocol utilizing lattice-based cryptography for IoT devices in fog networks Data-driven human and bot recognition from web activity logs based on hybrid learning techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1