{"title":"辽宁省地热响应变化特征分析","authors":"Wei Zhu, W. Tang, Qiang Liu, Meiqiu Zhang","doi":"10.26599/jgse.2017.9280033","DOIUrl":null,"url":null,"abstract":": Due to energy shortage and increasing environmental awareness, resources in shallow underground space have been rapidly exploited and utilized. So that studying variation characteristics of geothermal response in gneiss is necessary for effective and rational use of underground heat. Based on field test of thermal response in gneiss under hydrogeological survey project carried out in shallow geothermal energy development zone in Liaoning Province, this thesis analyzes mathematical statistics of geothermal response characteristics in main gneiss of Laoning Province. The initial formation temperature ranges from 10.80 ℃ to 15.80 ℃ according to field test. The statistical results show that in the condition of natural water content, the average thermal conductivity of Quaternary loose rocks comes as clay< silty< silty fine sand< medium sand< coarse sand< gravelly sand. This order is consistent with thermal conductivity characteristics of gneiss obtained in the laboratory. Formation temperature recovery in different strata follows as granite> medium sand> clay. This order is opposite to the absolute value of temperature recovery curve slope of corresponding lithology, which shows that the stratum with higher temperature recovery rate has lower temperature recovery curve slope.","PeriodicalId":43567,"journal":{"name":"Journal of Groundwater Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis on variation characteristics of geothermal response in Liaoning Province\",\"authors\":\"Wei Zhu, W. Tang, Qiang Liu, Meiqiu Zhang\",\"doi\":\"10.26599/jgse.2017.9280033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Due to energy shortage and increasing environmental awareness, resources in shallow underground space have been rapidly exploited and utilized. So that studying variation characteristics of geothermal response in gneiss is necessary for effective and rational use of underground heat. Based on field test of thermal response in gneiss under hydrogeological survey project carried out in shallow geothermal energy development zone in Liaoning Province, this thesis analyzes mathematical statistics of geothermal response characteristics in main gneiss of Laoning Province. The initial formation temperature ranges from 10.80 ℃ to 15.80 ℃ according to field test. The statistical results show that in the condition of natural water content, the average thermal conductivity of Quaternary loose rocks comes as clay< silty< silty fine sand< medium sand< coarse sand< gravelly sand. This order is consistent with thermal conductivity characteristics of gneiss obtained in the laboratory. Formation temperature recovery in different strata follows as granite> medium sand> clay. This order is opposite to the absolute value of temperature recovery curve slope of corresponding lithology, which shows that the stratum with higher temperature recovery rate has lower temperature recovery curve slope.\",\"PeriodicalId\":43567,\"journal\":{\"name\":\"Journal of Groundwater Science and Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Groundwater Science and Engineering\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.26599/jgse.2017.9280033\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Groundwater Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.26599/jgse.2017.9280033","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"WATER RESOURCES","Score":null,"Total":0}
Analysis on variation characteristics of geothermal response in Liaoning Province
: Due to energy shortage and increasing environmental awareness, resources in shallow underground space have been rapidly exploited and utilized. So that studying variation characteristics of geothermal response in gneiss is necessary for effective and rational use of underground heat. Based on field test of thermal response in gneiss under hydrogeological survey project carried out in shallow geothermal energy development zone in Liaoning Province, this thesis analyzes mathematical statistics of geothermal response characteristics in main gneiss of Laoning Province. The initial formation temperature ranges from 10.80 ℃ to 15.80 ℃ according to field test. The statistical results show that in the condition of natural water content, the average thermal conductivity of Quaternary loose rocks comes as clay< silty< silty fine sand< medium sand< coarse sand< gravelly sand. This order is consistent with thermal conductivity characteristics of gneiss obtained in the laboratory. Formation temperature recovery in different strata follows as granite> medium sand> clay. This order is opposite to the absolute value of temperature recovery curve slope of corresponding lithology, which shows that the stratum with higher temperature recovery rate has lower temperature recovery curve slope.
期刊介绍:
It publishes original, innovative, and integrative research in groundwater science and engineering with a focus on hydrogeology, environmental geology, groundwater resources, agriculture and groundwater, groundwater resources and ecology, groundwater and geologic environment, groundwater circulation, groundwater pollution, groundwater exploitation and utilization, hydrogeological standards and methods, groundwater information science, climate change and groundwater. The Editorial Board is composed of more than sixty world-renowned experts and scholars, 47% of whom are foreign scientists. Up to now, the foreign authors contributed papers are from USA, Japan, Canada, Australia, Russia, Mongolia, Thailand and Vietnam.