发展湍流混合层与非预混氢空气燃烧过程中NOx生成的DNS预测

IF 1.5 4区 工程技术 Q3 MECHANICS Journal of Turbulence Pub Date : 2022-12-02 DOI:10.1080/14685248.2022.2156524
T. Ohta, Ryota Hirata, Yasuyuki Sakai
{"title":"发展湍流混合层与非预混氢空气燃烧过程中NOx生成的DNS预测","authors":"T. Ohta, Ryota Hirata, Yasuyuki Sakai","doi":"10.1080/14685248.2022.2156524","DOIUrl":null,"url":null,"abstract":"ABSTRACT Direct numerical simulations of three-dimensional compressible mixing layers with non-premixed hydrogen–air combustion were performed using a detailed chemical reaction mechanism with production. Flow fields with three types of initial disturbances were simulated to investigate the relationship between developing vortical structures and formation. The amounts of and produced in the simple shear layer were smaller than those in the two- and three-dimensional mixing layers with vortical structures. In the mixing layers, the formation and expansion of the combustion region by the roller vortices and the baroclinic torque had a significant impact on production, while the relatively low-temperature combustion region formed by the three-dimensional developed rib vortices in the blade regions between the roller vortices had a large effect on the production. It was found that a two-dimensional simulation can estimate the production, while the information on a three-dimensional mixing layer is necessary to predict the production.","PeriodicalId":49967,"journal":{"name":"Journal of Turbulence","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNS predictions of NOx production in developing turbulent mixing layers with non-premixed hydrogen–air combustion\",\"authors\":\"T. Ohta, Ryota Hirata, Yasuyuki Sakai\",\"doi\":\"10.1080/14685248.2022.2156524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Direct numerical simulations of three-dimensional compressible mixing layers with non-premixed hydrogen–air combustion were performed using a detailed chemical reaction mechanism with production. Flow fields with three types of initial disturbances were simulated to investigate the relationship between developing vortical structures and formation. The amounts of and produced in the simple shear layer were smaller than those in the two- and three-dimensional mixing layers with vortical structures. In the mixing layers, the formation and expansion of the combustion region by the roller vortices and the baroclinic torque had a significant impact on production, while the relatively low-temperature combustion region formed by the three-dimensional developed rib vortices in the blade regions between the roller vortices had a large effect on the production. It was found that a two-dimensional simulation can estimate the production, while the information on a three-dimensional mixing layer is necessary to predict the production.\",\"PeriodicalId\":49967,\"journal\":{\"name\":\"Journal of Turbulence\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Turbulence\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/14685248.2022.2156524\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Turbulence","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14685248.2022.2156524","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要利用详细的生产化学反应机理,对具有非预混氢气-空气燃烧的三维可压缩混合层进行了直接数值模拟。模拟了具有三种初始扰动的流场,以研究发展中的旋涡结构与形成之间的关系。在简单剪切层中产生的和的量小于在具有旋涡结构的二维和三维混合层中产生和的量。在混合层中,辊涡和斜压扭矩对燃烧区的形成和扩展对产量有显著影响,而辊涡之间的叶片区域中三维展开的肋涡形成的相对低温的燃烧区对产量有很大影响。研究发现,二维模拟可以估计产量,而三维混合层的信息对于预测产量是必要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNS predictions of NOx production in developing turbulent mixing layers with non-premixed hydrogen–air combustion
ABSTRACT Direct numerical simulations of three-dimensional compressible mixing layers with non-premixed hydrogen–air combustion were performed using a detailed chemical reaction mechanism with production. Flow fields with three types of initial disturbances were simulated to investigate the relationship between developing vortical structures and formation. The amounts of and produced in the simple shear layer were smaller than those in the two- and three-dimensional mixing layers with vortical structures. In the mixing layers, the formation and expansion of the combustion region by the roller vortices and the baroclinic torque had a significant impact on production, while the relatively low-temperature combustion region formed by the three-dimensional developed rib vortices in the blade regions between the roller vortices had a large effect on the production. It was found that a two-dimensional simulation can estimate the production, while the information on a three-dimensional mixing layer is necessary to predict the production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Turbulence
Journal of Turbulence 物理-力学
CiteScore
3.90
自引率
5.30%
发文量
23
审稿时长
6-12 weeks
期刊介绍: Turbulence is a physical phenomenon occurring in most fluid flows, and is a major research topic at the cutting edge of science and technology. Journal of Turbulence ( JoT) is a digital forum for disseminating new theoretical, numerical and experimental knowledge aimed at understanding, predicting and controlling fluid turbulence. JoT provides a common venue for communicating advances of fundamental and applied character across the many disciplines in which turbulence plays a vital role. Examples include turbulence arising in engineering fluid dynamics (aerodynamics and hydrodynamics, particulate and multi-phase flows, acoustics, hydraulics, combustion, aeroelasticity, transitional flows, turbo-machinery, heat transfer), geophysical fluid dynamics (environmental flows, oceanography, meteorology), in physics (magnetohydrodynamics and fusion, astrophysics, cryogenic and quantum fluids), and mathematics (turbulence from PDE’s, model systems). The multimedia capabilities offered by this electronic journal (including free colour images and video movies), provide a unique opportunity for disseminating turbulence research in visually impressive ways.
期刊最新文献
A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade On the physical structure, modelling and computation-based prediction of two-dimensional, smooth-wall turbulent boundary layers subjected to streamwise pressure gradients Large-eddy simulation of shock train in convergent-divergent nozzles with isothermal walls Uniform momentum zones in turbulent channel flow Transient energy transfer and cascade analysis for stratified turbulent channel flows
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1